высказывания будет определена как возрастающая сростом его истинностного содержания и убывающая с ростом его ложностного содержания. При этом я буду широко использовать идеи Альфреда Тарского, особенно его теорию истины и его теорию классов следствий и дедуктивных систем (обе эти теории рассматриваются в примечании 18 к этому разделу; более подробное рассмотрение этого вопроса см. в главе 9 настоящей книги).
Есть возможность так определить ложностное содержание некоторого высказывания а (отличное от класса ложных высказываний, следующих из а),чтобы (а) это было содержание (или класс следствий в смысле Тарского), (Ь) оно содержало все ложные высказывания, следующие из а, и (с) оно не содержало бы никаких истинных высказываний. Для этого нужно только релятивизировать понятие содержания, что можно сделать вполне естественным образом.
Будем называть содержание, или класс следствий, высказывания а именем 'А' (так что в общем случае X есть содержание высказывания х). Будем вместе с Тарским называть содержание логически истинного высказывания именем 'L'. L есть класс всех логически истинных высказываний: он есть общее содержание всех содержаний и всех высказываний. Мы можем сказать, что L есть нулевое содержание.
Релятивизируем теперь идею содержания, так чтобы мы могли говорить об относительном содержании высказывания а при данном контексте Y, и будем обозначать это относительное содержание символом 'a, Y'. Это класс всех высказываний, выводимых из a в присутствии Y, но не из одного Y.
Мы сразу же видим, что если A есть содержание высказывания a, то при релятивизированном способе записи A=a,L; это значит, что абсолютное содержание A высказывания a равно относительному содержанию a, если задана «логика» (= нулевое содержание).
Более интересным случаем относительного содержания предположения (conjecture) а является случай a, Bt, где Bt — наше фоновое знание в момент времени t, то есть знание, которое в момент t принимается без обсуждения. Мы можем сказать, что в новом предположении а интересным является прежде всего его относительное содержание а, B, то есть та часть содержания а.В {17} , которая выходит за пределы В.Точно так же, как содержание логически истинного высказывания равно нулю, так относительное содержание предположения а при данном В равно нулю, если а содержит только фоновое знание и ничего более. В общем случае мы можем сказать, что если а принадлежит Б, или, что то же самое, если А?В, то а, В = 0. Таким образом, относительным содержанием высказывания x, Y является та информация, которой х в присутствии Y превосходит Y.
Теперь мы можем определить ложностное содержание высказывания а, которое мы обозначим АF,как содержание высказывания апри данном истинностном содержании а (то есть пересечении АT между А и T, где T — система, в смысле Тарского, истинных высказываний). Иначе говоря, мы можем определить:
АF = а, АT.
Определенное таким образом АF отвечает нашим пожеланиям, или требованиям, адекватности: (a) AF есть содержание, пусть даже только относительное содержание; в конце концов, абсолютные содержания — это тоже относительные содержания, если дана логическая истина (или в предположении, что Lлогически истинно); (b) АFсодержит все ложные высказывания, следующие из а, поскольку это дедуктивная система высказываний, которые следуют из а, принимая истинные высказывания за наш (относительный) ноль; (с) Арне «содержит» никаких истинных высказываний в том смысле, что его истинные высказывания рассматриваются не как содержание, а как его (относительное) нулевое содержание.
Содержания иногда логически сравнимы, а иногда нет; они образуют частично упорядоченную систему — упорядоченную отношением включения, точно так же как высказывания образуют систему, частично упорядоченную отношением следования (entailment). Абсолютные содержания А и В сравнимы, если А ? В или В ? А. Для относительных содержаний условия сравнимости сложнее.
Если X есть финитно аксиоматизируемое содержание, или дедуктивная система, то существует высказывание x такое, что X есть содержание x.
Таким образом, если Y — финитно аксиоматизируемо, мы сможем написать:
x, Y= x, у.
В этом случае можно видеть, что х, Y равно абсолютному содержанию конъюнкции х.y минус абсолютное содержание y.
Аналогичные соображения показывают, что а, Bи с, D будут сравнимы, если
(А + В)- В сравнимо с (С + D) - D,
где есть сложение дедуктивных систем по Тарскому: если обе аксиоматизируемы, А + D есть содержание конъюнкции а.Ь.
Таким образом, сравнимость будет достаточно редкой в этой частично упорядоченной системе. Однако есть способ показать, что эта частично упорядоченная система может быть «в принципе» — то есть без противоречия — линейно упорядочена. Этим способом является применение формальной теории вероятностей. (Я утверждаю здесь только ее применимость к аксиоматизируемым системам, но не исключено, что ее можно расширить и на неаксиоматизируемые системы; см. также главу 9).
Мы можем написать 'p(x, Y)' или
P(X,Y)
(читается как «вероятность х при условии Y ») и применить формальную систему аксиом для относительной вероятности, которую я изложил в других местах (например, в моей L. Sc. D., Новые приложения *iv и *v[52]) . В результате p(x,Y) будет числом от 0 до 1 — обычно мы не имеем представления о том, каким именно числом — и мы можем утверждать в самом общем виде, что
р(а, В) и р(c, D) в принципе совместимы.
И хотя мы обычно не имеем в нашем распоряжении достаточной информации для решения вопроса о