новую концепцию Вселенной[90].

Открытие вселенной

К первым десятилетиям 20 века сложилась, в общем-то, довольно простая картина строения Вселенной. Она превосходно отражена в иерархической теории шведского астронома Карла Вильгельма Шарлье (1862–1934), построенной им в двух публикациях в 1908 и 1922 годах. Занимаясь много лет звездной статистикой, Шарлье обратил внимание на тенденцию звезд образовывать скопления различного масштаба. Отсюда он и вывел гипотезу о Вселенной как бесконечной иерархии все более крупных структур — звезд, звездных скоплений, скопление скоплений и т. д., которые открываются по мере совершенствования телескопов. Вскоре эти представления были распространены на галактики и галактические скопления.

Между тем, когда в 1922 году выходила в свет статья Шарлье под названием «Как может быть построен бесконечный мир», астрономия уже вплотную подошла к созданию нового взгляда на устройство этого мира.

Возникновение современной модели Вселенной обязано двум внешне независимым подходам. Теоретически она была предсказана в результате бурного развития новой теории гравитации в работах Альберта Эйнштейна (1879–1955). В 1922–1924 годах советский математик Александр Александрович Фридман (1888–1925) опубликовал две статьи, где были получены именно те решения уравнений эйнштейновской общей теории относительности, которые до сих пор составляют основу космологических взглядов. Фридмановская Вселенная должна была расширяться или сжиматься как целое, никогда не оставаясь застывшей, причем в модели хорошо было видно, что в некоторые эпохи материя находилась в состояниях, никак не похожих на то, которое наблюдается теперь.

Однако роль этих работ оставалась неясной вплоть до рубежа 20-30-х годов, когда появились новые экспериментальные данные, открывающие новую перспективу в астрономии.

Эти данные вытекали в первую очередь из результатов американского астронома Эдвина Пауэлла Хаббла (1889–1953), масштаб деятельности которого ставит его в один ряд с Гиппархом, Тихо Браге и Гершелем — каждый из них олицетворяет целую эпоху древнейшей науки.

Впрочем, начало космологической революции было положено героическими усилиями руководителей обсерватории Маунт-Вилсон, которым удалось в 1917 году продолжить славу своего крупнейшего астрономического учреждения установкой самого мощного в то время телескопа со 100-дюймовым (2,5 метра!) зеркалом, специально ориентированного на разрешение туманностей.

Хаббл, первоначально получивший юридическое образование и увлекавшийся многими делами — от бокса до физики, как раз к 1917 году переквалифицировался в астрономы. В данном случае муза Урания явно не спешила — Хаббл на целых два года оторвался от дела для участия в первой мировой войне.

После возвращения в Штаты он приступил к работе на Маунт-Вилсоновском телескопе, где его безраздельно увлекла проблема туманностей, а конкретно поиск их звездного населения. Через 4 года Хаббл нашел первую цефеиду в туманности Андромеды.

После этого Хаббл сосредоточил внимание на туманности NGC 6822 [91], очень похожей на уменьшенную копию Малого Магелланова Облака. Здесь обнаружилось 11 цефеид, и Хаббл, применив правила цефеидного масштаба, определил расстояние до нее — порядка 700 тысяч световых лет. 35 цефеид, найденных им в туманности М 33, позволили определить расстояние и в этом случае. Оно оказалось около 800 тыс. св. лет, примерно таким же, как и расстояние до туманности Андромеды (М 31)[92].

На данном пути к 1925 году сформировалась галактическая картина строения Вселенной. Многочисленные туманности «отпали» от Галактики, стало ясно, что они представляют собой столь же обширные и очень далекие звездные миры.

Но самое эффектное открытие пришло к Хабблу в 1929 году, когда были измерены расстояния до 20 галактик. Он знал, что в спектрах этих галактик есть систематическое красное смещение, как будто они разбегаются от нас по всем направлениям[93]. При этом скорость убегания, измеренная по допплер-эффекту, оказалась пропорциональной расстоянию до галактики (v ? Hr). Величина Н, получившая название «постоянной Хаббла» (вообще-то она функция времени), первоначально из-за бедной статистики была явно завышена (Н ? 500 км/с. Мпс). Это давало для возраста Вселенной (? ~ 1/H) очень малое значение — около 2 миллиардов лет. Однако существенно не конкретное значение, а впервые полученное прямое астрономическое свидетельство того, что некогда все галактики стали разбегаться из одной точки или, по крайней мере, из области пространства, очень малой по сравнению с нынешними межгалактическими расстояниями.

Разумеется, найденный возраст был огромен по сравнению с библейским и крохотен по меркам буддийской космологии. Но трудности возникали при гораздо более прозаических сопоставлениях. Например, накопление свинца в скальных породах земной поверхности, связанное с распадом урана, вело к оценке 2–6 млрд. лет. А возраст звезд, в том числе и Солнца, оценивался в то время чудовищным сроком в 10 000 млрд. лет. Иными словами, численный результат Хаббла привел к довольно сильному и длительному замешательству среди специалистов самого разного профиля. Не может же, в самом деле, Вселенная родиться позже какой-то звезды или земного пригорка!

Более корректная возрастная шкала появилась после серьезной переоценки расстояний в Местной Системе — группе ближайших галактик. Это произошло на рубеже 40-50-х годов. Впоследствии поступила и новая информация, связанная с разрешением некоторых ярких областей в очень далеких галактиках на отдельные звезды. В результате возникла современная оценка Н=50? 70 км/с. Мпс, и, соответственно, возраст Вселенной увеличился до 12–20 млрд. лет. С такими данными согласуется и геологический возраст Земли (4,6 млрд. лет) и основные современные модели звезд. «Возрастная драма» на некоторое время затормозила идею космологической эволюции, появились конкурирующие модели, пытающиеся в какой-то степени сохранить статическую или стационарную картину.

Но главный прорыв совершился.

Хаббл дал первую классификацию туманностей как внутригалактических (их он разделил на планетарные и диффузные), так и внешних, то есть собственно галактик. Оказалось, что все галактики укладываются в 4 основных класса бесформенные или иррегулярные (Irr), эллиптические (Е), спиральные нормального типа (S) и пересеченные спиральные, или спирали с перемычкой (SB). Итог этой работе был подведен в его знаменитом «Царстве туманностей», опубликованном в 1936 году.

Хаббловская классификация галактик

Первая физическая модель расширяющейся Вселенной была построена бельгийским ученым, теологом по образованию, Жоржем Эдуардом Лемэтром (1894–1966) в 1927–1931 годах. Отталкиваясь от нестационарных решений космологических уравнений, Лемэтр предположил, что Вселенная сначала пребывала в сверхплотном и относительно компактном состоянии «космического яйца». Это состояние было неустойчивым, что и привело к Большому Взрыву его последствия мы видим в форме разлетающихся во все стороны осколков галактик. Эта грандиозная картина появилась как раз вовремя и сомкнулась с результатами наблюдений Хаббла[94]. Однако появления более последовательной физической модели пришлось ожидать еще несколько десятилетий. Только в 1946 году американский физик Георгий Антонович Гамов[95] (1904–1967) предложил так называемую модель горячей Вселенной, которая и легла в основу современной космологии.

В отличие от Лемэтра, считавшего, что в сверхплотном «космическом яйце» после Большого Взрыва должны были преобладать ядра тяжелых элементов, Гамов развил концепцию ядерной эволюции — от легчайшего водорода к гелию и более тяжелым элементам. Такая точка зрения гораздо лучше согласовывалась с наблюдаемым в космосе относительным обилием легких ядер. В ранние моменты после Первовзрыва вещество, согласно Гамову, имеет очень высокую температуру, так что сложные атомные ядра

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату