обратимся теперь к несколько драматической истории его открытия. Дело в том, что уже в 1969 году американский физик Дж. Вебер опубликовал сообщение о регистрации новых волн.
В качестве детектора Вебер использовал полутораметровый алюминиевый цилиндр радиусом 30 см и массой в полторы тонны. Цилиндр максимально изолировался от случайных воздействий — его подвешивали в вакуумной камере на проволочных креплениях. Собственные колебания цилиндра с частотой 1661 Герц после возбуждения затухали примерно за 10 секунд, то есть он успевал совершить до 100 тысяч колебаний. Чувствительность детектора была столь велика, что он мог регистрировать сокращение длины порядка 10– 15 см. Механические колебания, вызванные каким-то внешним импульсом, преобразовывались в электрические сигналы специальными пьезоэлектрическими датчиками, укрепленными посреди цилиндра. Совершенно такая же регистрирующая система была смонтирована почти за 1000 км от основной лаборатории[126].
Вскоре после начала опытов Вебер отметил, что в обоих цилиндрах в среднем раз в две недели одновременно возникают колебания, и никаких причин, кроме возможной регистрации искомых волн, для этих колебаний не видно. Более того, Вебер рассчитал местонахождение источника излучения где-то в центре Галактики.
Публикация результатов прозвучала сенсационно и в то же время вполне реалистически: в неизбежность этого открытия верили более полувека. Трудно назвать хоть одно физическое явление, к открытию которого физики были бы морально готовы в такой степени.
Но очень быстро наступил более пессимистический момент. Теоретики сообразили, что поток излучения, зарегистрированный приборами Вебера (10-3 — 10-1 Bт/см2), слишком велик — необходимо еще придумать источник, способный к столь активной генерации. Если бы центр Галактики излучал именно так, то он попросту целиком высветился бы в форме гравитационных волн примерно за 10 миллионов лет, что в 1000 раз меньше минимально допустимого возраста Галактики.
Так родилась любопытнейшая проблема — что именно зарегистрировано в опытах Вебера? По этому поводу формулировались самые разные гипотезы, но окончательной ясности так и нет.
Ясно только, что официальное открытие гравитационных волн еще не состоялось. Вебер сделал шаг в нужном направлении, но его данные пока нельзя интерпретировать так, как хотелось бы. Тем более, что прокатившаяся по всему миру «гравитационно-волновая лихорадка», сопровождавшаяся еще более прецизионными измерениями, дала обескураживающие результаты. Ни одна лаборатория не смогла воспроизвести нечто даже близко напоминающее веберовские достижения.
Остается надеяться, что проблема обнаружения гравитационных волн все-таки не перейдет по наследству в 21 столетие. Для ее решения прилагаются очень серьезные усилия. И даже небольшая вероятность положительного результата вполне их окупает.
Дело в том, что гравитационные волны с большой степенью вероятности могут послужить ключом к решению фундаментальнейших задач — от физики элементарных частиц до космологии.
Реликтовые гравитационные волны должны нести информацию о самых ранних эпохах космологической эволюции. Из-за слабости взаимодействия гравитационные волны очень рано отрываются от остальных видов материи, и с их помощью мы смогли бы заглянуть едва ли не в Сингулярность, во всяком случае, по современным представлениям, ни один иной реликт не способен напрямую рассказать о состоянии Вселенной в планковскую эру t ~ tP. Таким образом, они дают абсолютный хронологический зонд, несут на себе отпечаток самой ранней истории, включая Первовзрыв.
Распространяясь в космическом пространстве, гравитационные волны опять-таки из-за предельно слабого взаимодействия с веществом способны настолько глубоко проникать вовнутрь плотных небесных тел, насколько это вообще возможно. Гравитационная астрономия выявила бы такие детали строения Вселенной, которые, видимо, никакими иными путями не добыть. Особо важно в этом отношении зондирование самых активных областей — ядер галактик и квазаров, которые практически недоступны наблюдению иными средствами. Между тем, там спрятаны наиболее мощные энергетические источники. Гравитационная карта неба должна весьма радикально отличаться от электромагнитной, полученной в диапазоне оптических и радиоволновых наблюдений. И возможно, мы пока совсем поверхностно оцениваем общую светимость ряда объектов — как раз в гравитационной области они и могут оказаться особенно яркими. Трудно избежать и предположения о том, что только наблюдения гравитационного излучения откроют путь к области экстремально высоких светимостей, близких к планковскому пределу LP.
Наконец, очень важно, что, исследуя гравитационные волны, мы вплотную подошли бы к решению задачи квантования гравитации. Опыт работы в области электродинамики подсказывает, что именно через волновую теорию проще всего прорваться к обнаружению корпускулярной структуры поля. В электродинамике этот процесс привел к теории фотонов. При квантовании гравитационного поля, казалось бы, должны проявляться особые частицы — гравитоны.
Теоретики изобрели их сразу же, как только были получены соответствующие решения волновых уравнений слабого гравитационного поля. Работа эта шла по аналогии с квантовой электродинамикой, но, к сожалению, без соответствующей экспериментальной основы.
Были построены простейшие модели взаимодействия гравитонов с другими частицами. Выяснилось, например, что электрон и позитрон, в принципе, могут аннигилировать в пару гравитонов, а гравитон в поле звезды может рождать пару — частицу и античастицу. Отсюда, естественно, возникло подозрение, что процессы такого рода и составляют микроскопическую основу взаимосвязи материи с геометрией пространства-времени, взаимосвязи, которая лишь в очень усредненной форме отражается классическими уравнениями Эйнштейна.
Не исключено, что гравитоны дадут неплохое начальное приближение для перехода к решению общей задачи о структуре пространства-времени в очень малых областях, вплоть до планковской. Квантование метрического поля при сохранении обычного смысла координат — операция не совсем последовательная. Но эта непоследовательность проявляется только вблизи планковской области, когда взаимодействие между гравитонами заведомо не мало, и они начинают интенсивно размножаться. В результате представления классической геометрии теряют смысл в очень малых объемах[127].
Не понятен пока механизм гравитационного взаимодействия элементарных частиц. Хотелось бы верить, что в какой-то степени его можно будет описать моделью обмена гравитонами.
По имеющимся оценкам, особо актуальной эта проблема должна стать лишь при фантастически высоких энергиях сталкивающихся частиц Е = mРс2 — порядка 2 миллиардов Джоулей. В этом плане далекое будущее физики высоких энергий тоже упирается в проблему планковской области. Все дороги ведут в Рим!
Мечты о космическом микронаселении
Рассматривая картину ранних космологических стадий, трудно избежать одного древнейшего предрассудка. Речь идет о более или менее длительном периоде начального Хаоса, из которого постепенно и в довольно поздние сроки формируются структуры. Конечно, сейчас ученые не мыслят его в виде какого-то клубящегося античного океана — разыгрывается модель крайне горячего газа элементарных частиц, однако идея бесструктурности объектов ранней Вселенной играет важную роль. Вроде бы все верно, какие структуры могут образовываться в среде, чья температура измеряется миллиардами миллиардов градусов? Любая из них разрушится в самом зародыше…
И все-таки проблема не так проста, как может показаться на первый взгляд.
Общепринятые ныне представления сводятся к тому, что лептоны, фотоны и кварки — частицы точечные, и первый структурный уровень эволюции соответствует синтезу адронов из кварков при t ~ 10-5 с. Адроны действительно сложные образования, их нетривиальная структура подтверждена прямыми экспериментами. Не исключено, что в соударениях при куда более высоких энергиях нам удастся установить сложное строение каких-то других частиц — выяснится, например, что кварки и (или) лептоны можно описать набором более простых структурных единиц. В этом случае придется выделять особую эпоху