координатой
На рисунке 15 точка А занимает ширину прямоугольного параллелепипеда, и измерения этого параллелепипеда соответствуют координатам этой точки, т. е., каждая из координат представлена на рисунке 15 четыре раза, т. е.:
х = а?А = Оах = ауа = aza?;
y = а?А = Оаy = аxа = аzа?;
z = aA = Oaz = аxа? = аyа?.
На эпюре (рис. 16) координаты х и z встречаются по три раза:
х = аzа ?= Оаx = аyа,
z = аxa? = Oaz = аyа?.
Все отрезки, которые соответствуют координате
y = Оау = аха
и два раза – расположенной горизонтально:
у = Оау = аzа?.
Данное различие появилось из-за того, что ось у присутствует на эпюре в двух различных положениях.
Следует учесть, что положение каждой проекции определяется на эпюре только двумя координатами, а именно:
1) горизонтальной – координатами
2) фронтальной – координатами
3) профильной – координатами
Используя координаты
Если точка А задается координатами, их запись определяется так: А (
При построении проекций точки
1) горизонтальная и фронтальная проекции
2) фронтальная и профильная проекции
3) горизонтальная проекция а так же удалена от оси
В случае, если точка лежит в любой из плоскостей проекций, то одна из ее координат равна нулю.
Когда точка лежит на оси проекций, две ее координаты равны нулю.
Если точка лежит в начале координат, все три ее координаты равны нулю.
Лекция № 3. Прямая
1. Проекции прямой
Для определения прямой необходимы две точки. Точку определяют две проекции на горизонтальную и фронтальную плоскости, т. е. прямая определяется с помощью проекций двух своих точек на горизонтальной и фронтальной плоскостях.
На рисунке 17 показаны проекции (
На рисунке 18 показаны проекции обеих точек, а на рисунке 19 – проекции проходящей через них прямой линии.
Если проекции прямой определяются проекциями двух ее точек, то они обозначаются двумя рядом поставленными латинскими буквами, соответствующими обозначениям проекций точек, взятых на прямой: со штрихами для обозначения фронтальной проекции прямой или без штрихов – для горизонтальной проекции.
Если рассматривать не отдельные точки прямой, а ее проекции в целом, то данные проекции обозначаются цифрами.
Если некоторая точка
2. Следы прямой
След прямой – это точка пересечения ее с некоторой плоскостью или поверхностью (рис. 20).
Горизонтальным следом прямой называется некоторая точка
На рисунке 21а изображен горизонтальный след прямой, а ее фронтальный след, – на рисунке 21б.
Иногда также рассматривается профильный след прямой,
Горизонтальный след находится в горизонтальной плоскости, т. е. его горизонтальная проекция
Итак,
3. Различные положения прямой
Прямую называют прямой общего положения, если она не параллельна и не перпендикулярна ни одной плоскости проекций. Проекции прямой общего положения тоже не параллельны и не перпендикулярны осям проекций.
Прямые, которые параллельны одной из плоскостей проекций (перпендикулярны одной из осей). На рисунке 22 показана прямая, которая параллельна горизонтальной плоскости (перпендикулярная оси z), – горизонтальная прямая; на рисунке 23 показана прямая, которая параллельна фронтальной плоскости (перпендикулярна оси
Из-за того что горизонтальная прямая (рис. 22) параллельна горизонтальной плоскости, ее фронтальная и профильная проекции будут параллельны осям, определяющим горизонтальную плоскость, т. е. осям
У фронтальной прямой (рис. 23) проекции