При митозе хромосомы удваиваются. Смысл митоза заключается в том, что дочерние клетки получают точные копии набора хромосом яйцеклетки. Отсюда следует вывод, что все клетки тела подобны друг другу.
1) клетки, имеющие только один хромосомный набор, именуются гаплоидными (это те же самые гаметы);
2) обычные клетки именуются диплоидными;
3) в жизни встречаются индивидуумы с тремя, четырьмя и более хромосомными наборами: триплоиды, тетраплоиды, полиплоиды.
2. Квантовая механика
Квантовая механика по-другому называется волновой механикой. Итак, квантовая механика – это теория, которая устанавливает способ описания и законы движения микрочастиц (элементарных частиц, атомов, молекул, атомных ядер) и их систем, а также связь величин, характеризующих частицы и их системы, с физическими величинами, непосредственно измеряемыми на опыте.
1) ферромагнетизм твердых тел;
2) сверхтекучесть твердых тел;
3) сверхпроводимость твердых тел;
4) была объяснена природа и происхождение нейтронных звезд, белых карликов и других астрофизических объектов.
На этом значение квантовой механики не заканчивается.
1) нерелятивистскую квантовую механику;
2) релятивистскую квантовую механику.
Различие релятивистской и нерелятивистской квантовой механики. Естественно, что если существует два направления квантовой механики, то значит, они должны противоречить друг другу. Через это противоречие можно просмотреть значение как нерелятивистской, так и релятивистской квантовой механики.
1) нерелятивистская квантовая механика более «строгая», это законченная фундаментальная физическая теория, главной особенностью которой является ее непротиворечивость. Релятивистская квантовая механика является более «мягкой», она допускает наличие противоречий в теории;
2) в нерелятивистской теории принято считать, что информация, помогающая взаимодействию, передается мгновенно. Релятивистская же квантовая механика утверждает, что взаимодействие распространяется со строго определенной скоростью (так называемой «конечной скоростью»). Следовательно, должно существовать что-то, что будет способствовать такой передаче. И этим «помощником» является физическое поле.
Одним из основоположников квантовой механики можно назвать Планка. Он первым выступил против существовавшей в то время теории теплового излучения. В основе теории теплового излучения лежала статистическая физика и классическая электродинамика. Эти две отрасли науки не дополняли друг друга, а наоборот, приводили к противоречию всю теорию теплового излучения.
В чем же заключается точка зрения Планка? А суть его точки зрения заключается в том, что свет излучается не непрерывно (как считалось ранее), а порциями. А точнее – дискретными порциями энергии, т. е. квантами.
В квантовой механике выделяют так называемые дискретные состояния. Смысл данного состояния в том, что тело большого масштаба непрерывно изменяет свою скорость. Причем изменение этой скорости может происходить как в сторону ее увеличения, так и в сторону ее уменьшения. Для изменения скорости имеют большое значение разнообразные физические явления. Именно эти явления способствуют увеличению скорости или же, наоборот, ее уменьшению. Примером физического явления, которое способствует уменьшению скорости тела, можно назвать сопротивление воздуха. Чтобы понять это, достаточно вспомнить маятник часов: сначала маятник колеблется довольно «часто», а затем останавливается вообще.
Понятно, что не только Планк сыграл выдающуюся роль в развитии квантовой механики.
1) в 1905 г.
2) в 1913 г.
3) в 1922 г. американец
4) эффект Комптона привел также к парадоксу. Он утверждал о корпускулярно-волновой природе света. И это было явное противоречие: эти два явления не могли смешиваться. В 1924 г. французский ученый
5) австриец
6) в 1926 г. ученые-физики проводили опыты, которые экспериментально окончательно подтвердили теорию де Бройля;
7) в 1927 г.
Окончательно квантовая механика как последовательная теория сформировалась благодаря трудам немецкого ученого – физика
Работы Гейзенберга были развиты другими учеными (например, Борном, Иорданом и др.). Работа немецкого физика Гейзенберга стала основой для матричной механики.
Также Гейзенберг является автором гипотезы о том, что любая физическая система никогда не может находиться в состоянии, в котором координаты ее центра инерции и импульса принимают одновременно равные значения.
Этот принцип известен в науке как «соотношение неопределенностей».
Согласно этому принципу, понятие координат и импульса неприменимо к микроскопическим объектам. Это объясняется тем, что эксперимент никогда не приводит к каким-либо точным данным. Это связано не с тем, что измерительная техника несовершенна, а с объективными свойствами микромира.
ЛЕКЦИЯ № 7. Биохимия
1. Понятие биохимии, история ее появления