Значения мультипликативных погрешностей изменяются пропорционально изменениям значений измеряемой величины. Значения мультипликативных погрешностей также пропорциональны чувствительности средства измерений Мультипликативная погрешность возникает из—за воздействия влияющих величин на параметрические характеристики элементов прибора.

Погрешности, которые могут возникнуть в процессе измерений, классифицируют по характеру появления. Выделяют:

1) систематические погрешности;

2) случайные погрешности.

В процессе измерения могут также появиться грубые погрешности и промахи.

Систематическая погрешность – это составная часть всей погрешности результата измерения, не изменяющаяся или изменяющаяся закономерно при многократных измерениях одной и той же величины. Обычно систематическую погрешность пытаются исключить возможными способами (например, применением методов измерения, снижающих вероятность ее возникновения), если же систематическую погрешность невозможно исключить, то ее просчитывают до начала измерений и в результат измерения вносятся соответствующие поправки. В процессе нормирования систематической погрешности определяются границы ее допустимых значений. Систематическая погрешность определяет правильность измерений средств измерения (метрологическое свойство).

Систематические погрешности в ряде случаев можно определить экспериментальным путем. Результат измерений тогда можно уточнить посредством введения поправки.

Способы исключения систематических погрешностей делятся на четыре вида:

1) ликвидация причин и источников погрешностей до начала проведения измерений;

2) устранение погрешностей в процессе уже начатого измерения способами замещения, компенсации погрешностей по знаку, противопоставлениям, симметричных наблюдений;

3) корректировка результатов измерения посредством внесения поправки (устранение погрешности путем вычислений);

4) определение пределов систематической погрешности в случае, если ее нельзя устранить.

Ликвидация причин и источников погрешностей до начала проведения измерений. Данный способ является самым оптимальным вариантом, так как его использование упрощает дальнейший ход измерений (нет необходимости исключать погрешности в процессе уже начатого измерения или вносить поправки в полученный результат).

Для устранения систематических погрешностей в процессе уже начатого измерения применяются различные способы

Способ введения поправок базируется на знании систематической погрешности и действующих закономерностей ее изменения. При использовании данного способа в результат измерения, полученный с систематическими погрешностями, вносят поправки, по величине равные этим погрешностям, но обратные по знаку.

Способ замещения состоит в том, что измеряемая величина заменяется мерой, помещенной в те же самые условия, в которых находился объект измерения. Способ замещения применяется при измерении следующих электрических параметров: сопротивления, емкости и индуктивности.

Способ компенсации погрешности по знаку состоит в том, что измерения выполняются два раза таким образом, чтобы погрешность, неизвестная по величине, включалась в результаты измерений с противоположным знаком.

Способ противопоставления похож на способ компенсации по знаку. Данный способ состоит в том, что измерения выполняют два раза таким образом, чтобы источник погрешности при первом измерении противоположным образом действовал на результат второго измерения.

Случайная погрешность – это составная часть погрешности результата измерения, изменяющаяся случайно, незакономерно при проведении повторных измерений одной и той же величины. Появление случайной погрешности нельзя предвидеть и предугадать. Случайную погрешность невозможно полностью устранить, она всегда в некоторой степени искажает конечные результаты измерений. Но можно сделать результат измерения более точным за счет проведения повторных измерений. Причиной случайной погрешности может стать, например, случайное изменение внешних факторов, воздействующих на процесс измерения. Случайная погрешность при проведении многократных измерений с достаточно большой степенью точности приводит к рассеянию результатов.

Промахи и грубые погрешности – это погрешности, намного превышающие предполагаемые в данных условиях проведения измерений систематические и случайные погрешности. Промахи и грубые погрешности могут появляться из—за грубых ошибок в процессе проведения измерения, технической неисправности средства измерения, неожиданного изменения внешних условий.

15. Качество измерительных приборов

Качество измерительного прибора – это уровень соответствия прибора своему прямому предназначению. Следовательно, качество измерительного прибора определяется тем, насколько при использовании измерительного прибора достигается цель измерения.

Главная цель измерения – это получение достоверных и точных сведений об объекте измерений.

Для того чтобы определить качество прибора, необходимо рассмотреть следующие его характеристики:

1) постоянную прибора;

2) чувствительность прибора;

3) порог чувствительности измерительного прибора;

4) точность измерительного прибора.

Постоянная прибора – это некоторое число, умножаемое на отсчет с целью получения искомого значения измеряемой величины, т. е. показания прибора. Постоянная прибора в некоторых случаях устанавливается как цена деления шкалы, которая представляет собой значение измеряемой величины, соответствующее одному делению.

Чувствительность прибора – это число, в числителе которого стоит величина линейного или углового перемещения указателя (если речь идет о цифровом измерительном приборе, то в числителе будет изменение численного значения, а в знаменателе – изменение измеряемой величины, которое вызвало данное перемещение (или изменение численного значения)).

Порог чувствительности измерительного прибора – число, являющееся минимальным значением измеряемой величины, которое может зафиксировать прибор.

Точность измерительного прибора – это характеристика, выражающая степень соответствия результатов измерения настоящему значению измеряемой величины. Точность измерительного прибора определяется посредством установления нижнего и верхнего пределов максимально возможной погрешности.

Практикуется подразделение приборов на классы точности, основанное на величине допустимой погрешности.

Класс точности средств измерений – это обобщающая характеристика средств измерений, которая определяется границами основных и дополнительных допускаемых погрешностей и другими, определяющими точность характеристиками Классы точности определенного вида средств измерений утверждаются в нормативной документации. Причем для каждого отдельного класса точности утверждаются определенные требования к метрологическим характеристикам Объединение установленных метрологических характеристик определяет степень точности средства измерений, принадлежащего к данному классу точности.

Класс точности средства измерений определяется в процессе его разработки. Так как в процессе эксплуатации метрологические характеристики как правило ухудшаются, можно по результатам проведенной калибровки (поверки) средства измерений понижать его класс точности.

16. Погрешности средств измерений

Погрешности средств измерений классифицируются по следующим критериям:

1) по способу выражения;

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату