Используя эти обозначения, можно отделить шкалы, расположенные в различных сигмах графика (сигмы разделяют на профиле десятки стандартных делений Т). Если между шкалами 2 и более сигм, то следует перечислить пропущенные сигмы. Например, если 2-я шкала находится выше 90 Т, а следующая 3-я – между 80 и 70, то следует записать 2'3' и т. д.
3. Шкалы, расположенные на одном уровне, записываются согласно порядковому номеру и подчеркиваются одной линией. Если разница показателей шкал в Т единицах не превышает 1 балла, то они также подчеркиваются, однако первой из них становится расположенная выше независимо от порядкового номера (21 – если 2-я имеет результат 68 Т, а 1-я – 67 Т).
4. Шкалы достоверности перечисляются начиная с наиболее высоко расположенной, между ними ставятся обозначения сигм.
Кроме описанного метода кодирования тестовых оценок, существует процедура, предложенная
Приведенные способы в соответствующей модификации могут быть перенесены на шифровку данных других методик, например тестов интеллекта. Приемы кодирования применимы в тех случаях, когда результаты отдельных субтестов выражаются в единых измерительных шкалах.
2. Шкальные оценки
Шкальные оценки – способ оценки результата теста путем установления его места на специальной шкале. Шкала содержит данные о внутригрупповых нормах выполнения данной методики в выборке стандартизации. Так, индивидуальные результаты выполнения заданий (первичные оценки испытуемых) сравниваются с данными в сопоставимой нормативной группе (например, результат, достигнутый учеником, сравнивается с показателями детей того же возраста или года обучения; результат исследования общих способностей взрослого сопоставляется со статистически обработанными показателями репрезентативной выборки лиц в заданных возрастных пределах).
Шкальные оценки в этом смысле имеют четко определенное количественное содержание и могут быть использованы при статистическом анализе. Одной из распространенных в психологической диагностике форм оценки результата теста путем соотнесения с групповыми данными является расчет процентилей.
Процентиль – процентная доля индивидов из выборки стандартизации, результат которых ниже данного первичного показателя. Шкалу процентилей можно рассматривать как совокупность ранговых градаций (см. ранговая корреляция) при числе рангов 100 и отсчете от 1-го ранга, соответствующего самому низкому результату; 50-й процентиль (PSQ) соответствует медиане (см. меры центральной тенденции) распределения результатов, Р›50 и Р‹50 соответственно представляют ранги результатов выше и ниже среднего уровня результата.
Процентили не следует смешивать с обычными процентными показателями. Последние представляют собой долю правильных решений из общего количества заданий теста в индивидуальном результате (см. первичные оценки). Ранги Р, и Р100 получают соответственно самый низкий и самый высокий результаты из наблюдавшихся в выборке, однако этим рангам могут соответствовать и далеко не нулевой (ни одного правильного решения) или абсолютный (все решения правильны) показатели (например, при общем количестве 120 заданий минимальный результат, соответствующий первому рангу, может составить 6 правильных решений, в то время как максимальный результат, соответствующий рангу Р100, будет составлять 95 правильно решенных заданий). Такая ситуация наблюдается, например, при оценке тестов скорости.
Основной недостаток процентильных шкал состоит в неравномерности единиц измерения. При нормальном распределении отдельные переменные тесно группируются в центре распределения и по мере удаления к краям рассеиваются. Поэтому равным частотам случаев вблизи центра соответствуют более короткие интервалы по оси абсцисс, расположенные по краям распределения оценок. Процентили показывают относительное положение каждого испытуемого в нормальной выборке, но не величину различий между результатами. Это создает некоторые неудобства в интерпретации индивидуальных результатов. Так, разница в первичных показателях, соответствующая интервалу Р70- Р80, может составить 10 баллов, а различие в количестве правильных решений в интервале рангов Р50-Р60 – лишь 1–3 балла.
Вместе с тем процентильные оценки обладают и рядом достоинств. Они легкодоступны пониманию пользователей психодиагностической информацией, универсальны по отношению к различным типам методик и легко рассчитываются.
Процентильные оценки не относятся к типичным шкальным показателям. Более широкое распространение в психодиагностике получили стандартные показатели, рассчитываемые на основе линейного и нелинейного преобразования первичных показателей, распределенных по нормальному или близкому к нормальному закону. При таком расчете проводится г-преобразование оценок (см. стандартизация, нормальное распределение). Чтобы определить 2-стандартный показатель, определяют разность между индивидуальным первичным результатом и средним значением для нормальной группы, а затем делят эту разность на а нормативной выборки. Полученная таким образом шкала z имеет среднюю точку М = 0, отрицательные значения обозначают результаты ниже среднего и убывают по мере удаления от нулевой точки; положительные значения обозначают, соответственно, результаты выше среднего. Единица измерения (масштаб) в шкале z равна 1а стандартного (единичного) нормального распределения.
Для преобразования полученного при стандартизации распределения первичных нормативных результатов в стандартную z-шкалу необходимо исследовать вопрос о характере эмпирического распределения и степени его согласованности с нормальным. Поскольку для большинства случаев значения показателей в распределении умещаются в пределах М ± 3?, единицы измерения простой z-шкалы слишком велики. Для удобства оценивания применяется еще одно преобразование типа z = (x – ‹x›) / ?. Примером такой шкалы могут быть оценки тестовой батареи SAT(СЕЕВ) методики для оценки способности к обучению (см. тесты достижений). Эта r-шкала пересчитана таким образом, что средней точке соответствует значение 500, а ? = 100. Другим аналогичным примером является шкала Векслера для отдельных субтестов (см. шкала измерения интеллекта Векслера, где М = 10, ? = 3).
Наряду с определением места индивидуального результата в стандартном распределении групповых данных введение ШО направлено и на достижение другой важнейшей цели – обеспечение сопоставимости количественных результатов различных тестов, выраженных в стандартных шкалах, возможности их совместных интерпретаций, сведение оценок к единой системе.
В случае, если оба распределения оценок в сравниваемых методиках близки к нормальному, вопрос о сопоставимости оценок решается довольно просто (в любом нормальном распределении интервалам М ± n? соответствует одинаковая частота случаев). Для обеспечения сопоставимости результатов, принадлежащих к рас-пределениям другой формы, применяются нелинейные преобразования, позволяющие придать распределению форму заданной теоретической кривой. В качестве такой кривой обычно используется нормальное распределение. Как и 160–150 в простом г-преобразовании, нормализованным стандартным показателям можно придать любую желаемую форму. К примеру, умножив такой нормализованный стандартный показатель на 10 и прибавив константу 50, получаем Т- показатель (см. стандартизация, миннесотский многоаспектный личностный опросник).
Примером нелинейно преобразованной в стандартную шкалу является и шкала станайнов (от англ. standart nine – «стандартная девятка»), где оценки принимают значения от 1 до 9, М = 5, ?=2.
Шкала станайнов получает все большее распространение, сочетая в себе достоинства стандартных шкальных показателей и простоту процентилей. Первичные показатели легко преобразуются в станайны. Для этого испытуемых ранжируют по возрастанию результатов и из них образуют группы с числом лиц, пропорциональным определенным частотам оценок в нормальном распределении тестовых результатов