Говорить о научном познании Вселенной можно только в одном случае — когда для всех происходящих в ней явлений действуют единые законы развития и существования. При этом законы могут по-разному проявляться, что зависит от сложившихся наборов граничных условий, однако их достаточно полный анализ снимает якобы возникающие противоречия. В некоторых редких случаях, когда встречаются некие необъяснимые явления (условно чудеса), мы, вероятнее всего, имеем дело с собственными недостаточным объемом информации, неверной методологией проведения исследований или неверным объяснением произошедшего.
С этих позиций следует подходить к рассмотрению геологической эволюции Земли. В данном случае требуется проявить максимальную осторожность, так как наша планета пока является уникальным объектом, интерпретировать этапы развития которого мы можем лишь по косвенным признакам. Знания, полученные о других планетах Солнечной системы астрономическими (косвенными) методами, вряд ли существенно изменят наши представления в ближайшие несколько десятилетий.
Единственное, что можно отметить, это — каждая планета имеет свой путь развития (по времени и по этапам), что позволит в будущем более обоснован-но сформулировать связь геологической эволюции с появлением и развитием жизни и разума.
Происхождение и развитие планет Солнечной системы, в частности Земли, является с давних пор предметом научного познания. Одной из самых ранних научных (не рассматривая мифологические представления, где встречаются интересные, не отвергаемые современной наукой предположения, полученные, однако, не опытным путем, а путем аксиоматических предположений-догм) гипотез было предположение Рене Декарта, основанное на астрономических наблюдениях, о формировании небесных тел из протозвездной материи. Далее на основе сформулированного Исааком Ньютоном закона всемирного тяготения Кант, Гершель и Лаплас создали более точные модели эволюционирующих звездных и планетных систем; основными факторами их развития им представлялись гравитация и изменения параметров движения в пределах каждой изолированной системы. Однако образование планет и их спутников было невозможно объяснить в рамках тогдашней классической физики. Причинами сгущения материи на удаленных от звезды орбитах могли быть случайные явления — прохождение звезды через облако вещества, метеорный поток, прохождение вблизи другой звезды, провоцирующее выброс звездной материи, и т. д. Возникновение планеты типа Земли представлялось достаточно уникальным явлением, а появление на ней жизни — тем более. Открытие ядерных реакций позволило объяснить энергетику звездных процессов, но сразу возник ряд вопросов о преобразовании материи. Открытие активно взаимодействующих космических объектов (двойных, тройных звезд, сверхновых, черных карликов и т. д.), являющихся довольно распространенными в Космосе, пошатнуло наше представление об уникальности Земли и, соответственно, наш неуемный антропоцентризм.
Одной из перспективных в настоящее время представляется «новая космогоническая теория» А. Е. Хотькова, где рассматривается влияние космических факторов на формирование и физико-химические свойства планет. По этой теории, формирование элементов, образующих небесные тела типа планет, происходит при периодических вспышках звезд, последовательно сбрасывающих со своей поверхности слои вещества вместе с энергозарядом. При этом образование соответствующего химического вещества определяется последовательностью вспышек. Первыми сбрасываются водород и гелий (первый столбец таблицы Менделеева), во второй вспышке — элементы второго столбца и т. д. При этом соблюдаются основные постулаты: гетерогенность Вселенной, разновозрастность материи, усложнение в процессе развития, качественные изменения на каждом этапе, выполнение законов сохранения и преобразования материи и энергии. Становится очевидной связь внутризвездных процессов с эволюционными явлениями во Вселенной. В принятой в астрономии классификации «Главной звездной последовательности» подтверждается вышесказанное.
Таким образом, космогонические процессы полностью подчиняются критериям развития по системе сепарирующих границ (оболочек); существует даже терминологическая аналогия при проявлении последовательно все более сложных структур. Интересно, что число таких этапов составляет не более 7–9, а при дальнейшем преобразовании практически всегда реализуется новая структура со своими сепарирующими границами.
Геологическая эволюция оболочки Земли началась с того момента, когда ее внешняя поверхность охладилась до температуры +600 ? +800?С. Следует отметить, что в настоящее время теория о формировании нашей планеты из сгустка материи имеет наибольшее количество теоретических и практических доказательств и может быть принята за основу.
На первом этапе внешняя оболочка Земли, вероятнее всего, состояла из достаточно однородной смеси, в основном из оливино-простых силикатов, окруженных не содержащими активных окислителей газами (типа крем-некислородиых соединений). В основе построения молекул данных веществ лежит тетраэдр, а межмолекулярные связи достаточно слабы и не имеют жестких (в смысле тенденции к построению) структур. Эти породы до настоящего времени сохранились на больших глубинах и образовали систему плит под поверхностью планеты.
Неустойчивая энергетика поверхностного слоя способствовала активному перемешиванию элементов (вулканы, землетрясения и т. д.) и внесению в атмосферу больших масс вещества, а также излучению энергии, что, соответственно, привело к охлаждению и затвердеванию поверхности планеты на достаточно небольшую глубину, ниже которой располагалась горячая пластичная подстилающая зона, в которой и происходило сложное перемещение так называемых вагнеровских плит, образующих нестационарную, твердую поверхность. Естественно, что единая система оболочки не могла сохраняться вследствие ряда внутренних и внешних силовых воздействий, что привело к образованию системы отдельных и взаимодействующих между собой плит.
На втором этапе, когда появились универсальный растворитель — вода, водяной пар (окись водорода) и газовая атмосфера изменяющегося состава со своими сложными динамическими законами, началась дифференциация
Таким образом, образование минералов обусловливалось уже
На третьем этапе геологической эволюции решающим фактором явилось взаимодействие с газоводяной оболочкой Земли. Появился третий класс минералов —
Четвертым и самым интересным для нас является этап эволюции геосферы, в котором планета пребывает до настоящего времени. Произошло образование длинных цепочек и кольцевых структур на основе атомов углерода, водорода и кислорода, то есть образование предшественников органических структур. При этом уже существующие органические структуры также включаются в геоэволюцию, так как после завершения своего цикла развития они становятся минералообразующим фактором: создаются залежи угля, нефти и др.
Время существования минерала определяется сложностью его структуры. Условной характеристикой может быть «субъективное время» — tсуб:
где N1 — количество составных элементов системы; Кс — коэффициент сложности элемента N; К3 — коэффициент законов связи элементов N; i — количество базовых (элементарных) образований, ниже которых общей структуры не существует.
При этом совершенно четко выявляются следующие закономерности:
1. Каждый последующий этап эволюции происходит во все более короткий промежуток собственного времени (от миллиардов до сотен миллионов лет).