впечатление. Но вскоре выяснилось, что этот эксперимент удается далеко не всегда, даже у самого Пристли.

В 1779 году голландец Ян Ингенхауз сделал существенное уточнение: он выяснил, что зеленые растения «очищают» воздух только на солнечном свету.

Еще большую ясность внес в этот загадочный опыт швейцарский ботаник Жан Сенебе. В 1782 году он окончательно установил, что днем при солнечном свете зеленое растение выделяет кислород, и доказал, что оно «очищает» воздух не потому, что «дышит», а в связи с его углеродистым питанием. Растение поглощает из воздуха углекислый газ и расщепляет его на кислород и углерод. Кислород оно освобождает в атмосферу, а из углерода и воды в его организме образуются безазотистые вещества — углеводы (крахмал, сахар). Впоследствии этот процесс получил название фотосинтеза.

К. А. Тимирязев доказал, что фотосинтез может совершаться только на свету и только в зеленых частях растения — в зернах хлорофилла. Он также установил, что эти зерна поглощают не все видимые лучи спектра, а только красные и сине-фиолетовые.

Земля, представляющая собой, по сути дела, огромный космический корабль, несущийся в просторах вселенной, сама подсказала, как решить задачу очищения воздуха. Впервые эту «подсказку» увидел К. Э. Циолковский, предложивший в космических кораблях в миниатюре воспроизводить основные процессы превращения веществ, протекающие на нашей планете. Он писал: «Как земная атмосфера очищает растения при помощи Солнца, так может возобновляться и наша искусственная. Она должна будет так же, как и земная, поддерживать кругооборот необходимых для жизни человека веществ — кислорода и воды — и очищать воздух от углекислого газа».

Идея Циолковского только в наши дни начала воплощаться в действительность. Первые эксперименты, проведенные в научно-исследовательских лабораториях, показали, что за внешней простотой кроются немалые трудности. Фактически речь шла о создании так называемой экологически замкнутой системы, которая полностью выполняла бы по отношению к человеку все функции биосферы Земли.

Не будем касаться сейчас полного цикла обмена веществ и обратимся к одному лишь газообмену. В среднем за сутки человек потребляет один килограмм кислорода и выделяет 1,3 килограмма углекислого газа. Как же сбалансировать этот обмен между растениями и человеком? Как устроить оранжерею в невесомости? Какие выбрать растения? Как обеспечить их размножение? Над этим работают ученые многих стран.

Хлореллу по праву называют космическим растением, хотя она вполне уютно чувствует себя и на Земле: это одна из микроскопических зеленых водорослей, заполняющих водоемы, когда «цветет» вода. В лабораториях хлореллу разводят в специальных открытых водоемах. А вот как выращивать ее в космическом корабле, пока еще не ясно. Очевидно, что к открытому водоему здесь прибегнуть нельзя.

Правда, уже создан компактный автоматизированный культиватор хлореллы с высокой продуктивностью. Но чтобы управлять каким-либо процессом, необходимо знать его происхождение, а многие тайны этой живой и нужной нам клетки не раскрыты до сих пор. И ученые поступили так же, как в свое время поступил И. П. Павлов, когда начал изучать высшую нервную деятельность животных. Он не стал дожидаться, когда каждая нервная клетка раскроет свои тайны и секреты, а попытался постичь общие закономерности работы мозга.

Ученые-сибиряки в своем эксперименте тоже рассматривали общие закономерности «поведения» культуры хлореллы. Они узнали, в частности, как она реагирует на то или иное воздействие — на освещенность, изменение температуры и т. д. Таким путем из десятков факторов, определяющих жизнедеятельность водоросли, удалось выделить несколько главных, а затем на основании полученных данных создать систему контроля и регулирования, которая автоматически поддерживала нужный для успешного развития хлореллы режим.

Корреспондент газеты «Известия», побывавший в лаборатории, писал, что культиватор хлореллы ничем не напоминает оранжерею. Внешне это тщательно закрытый огромный фонарь, скорее похожий на какой-то химический реактор. Внутренние стенки «фонаря» зеркальные и почти не выпускают наружу свет мощной ксеноновой лампы, расположенной по оси культиватора. Хлорелла живет в тонком пятимиллиметровом промежутке между большими пластами, сделанными из органического стекла. Эти «жилища» хлореллы именуют в лаборатории кюветами. Они, как средневековый воротник жабо, охватывают «шею» ксеноновой лампы. Под действием ее лучей в этом зеленом ожерелье и происходит таинственный процесс фотосинтеза. Кюветы с общей поверхностью в 8 квадратных метров, в которых всего 500 (!) граммов хлореллы, полностью удовлетворяют потребность человека в кислороде.

Тридцать дней культиватор хлореллы взамен выдыхаемого углекислого газа давал организму испытательницы кислород. При этом водоросль чутко реагировала на поведение своего «партнера»: во время сна человека, например, ритм ее жизни тоже замедлялся.

«И выходит, без воды…»

Справедливость этих слов из песни к кинофильму «Волга-Волга» вряд ли нужно доказывать. Вода, как известно, составляет 60–65 процентов веса человеческого тела. Потеря хотя бы 10 процентов ее уже опасна для жизни. Без пищи человек может прожить довольно долго, без воды же он погибнет через несколько дней.

Человеческому организму необходимо получать ежесуточно 2–2,5 литра воды. Это количество может колебаться в зависимости от изменений температуры окружающей среды, выполняемой работы, рациона питания и т. д. Но космический полет — тоже работа, притом работа в необычных условиях, а пить космонавт должен обычную воду. И проблема воды становится одной из важнейших в обеспечении космического полета.

Перед первым запуском человека в космос медики должны были ответить на многие вопросы: сможет ли пить воду космонавт в условиях невесомости, в чем ее хранить, как принимать и в каких количествах, каков должен быть запас воды? Уже первые эксперименты на реактивных самолетах показали, что при невесомости вода «выскальзывает» из открытых сосудов, распадается на мелкие шарообразные частицы и начинает «плавать» в кабине.

На «Востоке» система водоснабжения состояла из жесткого контейнера, в котором размещалась емкость из прочной полиэтиленовой пленки. От емкости отходил трубопровод со специальным мундштуком. Чтобы напиться, нужно было взять в рот мундштук, нажать на кнопку специального запирающего устройства и затем всасывать воду. Такой способ утоления жажды не вызывал никаких затруднений.

Но все известные нам полеты длились пока еще не более 14 суток. В этом случае запас воды был достаточен. А как решать «водную проблему» в длительных космических рейсах? Ведь если отправиться в межпланетное путешествие на несколько месяцев или лет, то вода понадобится не только для приготовления пищи, но и для санитарно-гигиенических целей. Космонавтам придется по утрам умываться, принимать душ или ванну. Тут уж 2–2,5 литра, конечно, не хватит.

Допустим, каждый член экипажа будет расходовать 4 литра в сутки (1,2 литра для питья, 1 литр для приготовления пищи и 1,8 литра на санитарно-хозяйственные нужды), тогда экипажу из 6 человек только на один месяц полета необходимо 720 литров. Такой вес брать в полет явно нерентабельно. Что же делать? Очевидно, необходимо вернуть ту воду, которую организм выделяет, испаряет кожей и выдыхает с воздухом. Вот эту влагу ученые и предлагают использовать вновь. Можно также вторично использовать санитарно-хозяйственные (смывные) воды.

Простой подсчет показывает, что уже в полетах, длящихся более месяца, целесообразно пользоваться водой не из запасов, взятых с Земли, а восстановленной методом регенерации из продуктов жизнедеятельности человека, так как регенерационная установка весит по крайней мере в несколько раз меньше, чем общее количество необходимой жидкости.

Поскольку наибольшее количество влаги выделяется из организма с мочой (1,2–1,4 литра в сутки), специалисты прежде всего стали искать способ восстановления воды из этого продукта. Сейчас известен целый ряд химических и физических методов, позволяющих добиться этого. Солнечную энергию можно, например, использовать для выпаривания мочи при высокой температуре, близкой к точке кипения, что в условиях пониженного давления требует относительно небольшой температуры (вакуумная

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×