чтобы сделать более понятным суть этого открытия.

Начнем с пустоты. Для физика пустота вовсе не является пустой. Это не каламбур. Уже давно установлено, что «абсолютной» пустоты, то есть «ничего, ничего», в принципе быть не может. Что же физики называют пустотой? Пустотой называют то, что остается, когда убирают все частицы, все кванты любых физических полей. Но тогда ничего не останется, скажет читатель (если он давно не интересовался физикой). Нет, оказывается, останется! Останется, как говорят физики, море нерожденных, так называемых виртуальных, частиц и античастиц. «Убрать» виртуальные частицы уже никак нельзя. В отсутствии внешних полей, то есть без сообщения энергии, они не могут превратиться в реальные частицы.

Лишь на короткий миг в каждой точке пустого пространства появляется пара — частица и античастица и тут же снова сливаются, исчезают, возвращаясь в свое «эмбриональное» состояние. Разумеется, наш упрощенный язык дает только некоторый образ тех квантовых процессов, которые происходят. Наличие моря виртуальных частиц-античастиц давно установлено прямыми физическими экспериментами. Не будем говорить здесь об этом, иначе мы бы неизбежно слишком отклонились от основной линии рассказа.

Чтобы избежать невольных каламбуров, физики называют пустоту вакуумом. Будем так делать и мы.

Достаточно сильное или переменное поле (например, электромагнитное) может вызвать превращение виртуальных частиц вакуума в реальные частицы и античастицы.

Интерес к подобным процессам теоретики и экспериментаторы проявляли давно. Рассмотрим процесс рождения реальных частиц переменным полем. Именно такой процесс важен в случае гравитационного поля. Известно, что квантовые процессы необычны, часто непривычны для рассуждений с точки зрения «здравого смысла». Поэтому, прежде чем говорить о рождении частиц переменным гравитационным полем, приведем простой пример из механики. Он сделает понятнее дальнейшее.

Представьте себе маятник. Его подвес перекинут через блок, подтягивая веревку или опуская ее, можно менять длину подвеса. Толкнем маятник. Он начнет колебаться. Период колебаний зависит только от длины подвеса: чем длиннее подвес, тем больше период колебаний. Теперь будем очень медленно подтягивать веревку. Длина маятника уменьшится, уменьшится и период, но увеличится размах (амплитуда) колебаний. Медленно вернем веревку в прежнее положение. Период вернется к прежнему значению, прежней станет и амплитуда колебаний. Если пренебречь затуханием колебаний вследствие трения, то энергия, заключенная в колебаниях, в конечном состоянии останется прежней — такой, как била до всего цикла изменения длины маятника. Но можно так изменять длину маятника, что после возвращения к исходной длине амплитуда его колебаний будет меняться. Для этого надо подергивать веревку с частотой вдвое больше частоты маятника. Так мы поступаем, раскачиваясь на качелях. Мы опускаем и поджимаем ноги в такт нашим качаниям, и размах качелей все увеличивается. Конечно, можно и остановить качели, если подгибать ноги не в такт колебаниям, а в «противотакт».

Подобным же образом можно «раскачивать» электромагнитные волны в резонаторе. Так называется полость с зеркальными стенками, отражающими электромагнитные волны. Если в такой полости с зеркальными стенками и с зеркальным поршнем имеется электромагнитная волна, то, двигая поршень вперед и назад с частотой, вдвое больше частоты электромагнитной волны, мы будем менять амплитуду волны. Двигая поршень в «такт» колебаниям волны, можно увеличить амплитуду, а значит, и интенсивность электромагнитной волны, а двигая поршень в «противотакт», можно гасить волну. Но если двигать поршень хаотически — и в такт и в «противотакт», — то в среднем всегда получится усиление волны, то есть в электромагнитные колебания энергия «накачивается».

Пусть теперь в нашей полости — резонаторе имеются волны всевозможных частот. Как бы мы ни двигали поршень, всегда найдется волна, для которой движение поршня происходит в такт. Амплитуда и интенсивность этой волны возрастут. Но чем больше интенсивность волны, тем больше она содержит фотонов-квантов электромагнитного поля. Итак, движение поршня, изменяя размер резонатора, ведет к рождению новых фотонов.

После знакомства с этими простыми примерами вернемся к вакууму, к этому морю всевозможных виртуальных частиц. Для простоты мы будем говорить пока только об одном сорте частиц — о виртуальных фотонах — частицах электромагнитного поля. Оказывается, процесс, подобный рассмотренному нами изменению размеров резонатора, который в классической физике ведет к усилению уже имеющихся колебаний (волн), в квантовой физике может приводить к «усилению» виртуальных колебаний, то есть к превращению виртуальных частиц в реальные. Так, изменение гравитационного поля со временем должно вызывать рождение фотонов с частотой, соответствующей времени изменения поля. Обычно эти эффекты ничтожны, так как слабы гравитационные поля. Однако в сильных полях ситуация меняется.

Еще один пример: очень сильное электрическое поле вызывает рождение из вакуума пар заряженных частиц — электронов и позитронов.

Вернемся из нашего краткого экскурса в физику пустоты к черным дырам. Могут ли рождаться частицы из вакуума в окрестностях черных дыр?

Да, могут. Это было известно давно, и в этом не было ничего сенсационного. Так, «при сжатии электрически заряженного тела и превращении его в заряженную черную дыру электрическое поле возрастает настолько, что рождает электроны и позитроны. Подобные процессы изучали академик М. Марков и его ученики. Но такое рождение частиц возможно и без черной дыры, надо лишь любым способом увеличить электрическое поле до достаточной величины. Ничего специфического для черной дыры здесь нет.

Академик Я. Зельдович показал, что рождаются частицы и в эргосфере вращающейся черной дыры, отнимая от нее энергию вращения. Такое явление подобно процессу, открытому Р. Пенроузом, о котором мы говорили в главе 3.

Все эти процессы вызываются полями вокруг черной дыры и приводят к изменению этих полей, но они не уменьшают саму черную дыру, не уменьшают размеры области, откуда не выходит свет и любое другое излучение и частицы.

Открытие Хоукинга 

Сенсационное открытие было сделано в 1974 году английским теоретиком С. Хоукингом. В учебнике по гравитации американских физиков Ч. Мизнера, К. Торна и Дж. Уилера, вышедшем еще до упомянутого открытия, о работах С. Хоукинга сказано, что в них «проявляется не только огромная интуиция, глубина и разносторонность, но также и дар необыкновенной решимости в преодолении тяжелейших физических трудностей, в стремлении найти и понять истину». С. Хоукинг показал, что существует квантовый процесс рождения частиц самой черной дырой, ее гравитационным полем, приводящий к уменьшению массы и размера черной дыры. На первый взгляд это кажется удивительным. Ведь при образовании черной дыры все процессы на сжимающейся звезде быстро замедляются, «застывают» для внешнего наблюдателя, гравитационное поле везде становится неизменным во времени. А такое поле рождать частицы не может. Следовательно, если во время формирования черной дыры переменное поле произведет какое-то (очень малое) количество частиц, поток этих частиц от возникающей черной дыры, как и все процессы, будет очень быстро затухать по мере приближения поверхности звезды к гравитационному радиусу. С. Хоукинг же утверждает, что это не так, поток не затухнет совсем, а будет продолжаться и после образования черной дыры. В чем же здесь дело?

Дело в том, что внутри черной дыры поле вовсе не застыло. Там неизменность во времени невозможна, все внутри дыры обязано двигаться, падать к центру. С этим обстоятельством и связан удивительный процесс, открытый С. Хоукингом. Мы помним, что в обычных условиях в вакууме виртуальные частицы на миг образуют пару частица — античастица, которые тут же сливаются. В поле тяготения черной дыры одна из возникших таким образом частиц может оказаться под горизонтом и будет неудержимо падать к центру, а другая останется снаружи. Теперь уже эта пара не сможет слиться ни через миг, никогда вообще. Частица, оказавшаяся снаружи, улетит в космос; унося с собой часть энергии черной дыры, а значит, и часть ее массы.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату