звезд первого поколения, обогащенное тяжелыми элементами, выбрасывалось в пространство. Из этого вещества возникали новые звезды, планеты. Таким образом, необходимость объяснения происхождения всех элементов (в том числе и тяжелых — железа, свинца и т. д.) на ранней стадии расширении Вселенной отжала. Но суть гипотезы горячей Вселенной оказалась правильной.

Многие исследователи отмечали, что содержание гелия в звездах и газе нашей Галактики гораздо больше, чем это можно объяснить нуклеосинтезом в звездах. (Подробнее об этом говорится далее.) Следовательно, синтез гелия должен происходить на раннем этапе расширения Вселенной. Но все же основным веществом Вселенной и сейчас является водород.

В теории, предложенной Г. Гамовым и его соавторами, оказывается, что расширяющееся вещество Вселенной превращается в смесь, большая часть которой составляет водород (70 процентов) и меньшая — гелий (30 процентов). Из этого вещества позже и формируются звезды и галактики. Почему же в теории горячей Вселенной все вещество не превращается в гелий, как это было в варианте начала в виде холодной нейтронной жидкости?

Все дело именно в том, что вещество было горячим. В горячем веществе имеется много энергичных фотонов. Имеются там также протоны и нейтроны, которые стремятся соединиться в дейтерий. Однако фотоны разбивают дейтерий, который образуется при слиянии протона и нейтрона, обрывая в самом начале цепочку реакций, ведущую к синтезу гелия. Когда Вселенная, расширяясь, достаточно охлаждается (до температуры меньше миллиарда градусов), то некоторое количество дейтерия уже сохраняется и приводит к синтезу гелия. Мы подробно рассмотрим этот процесс далее.

Теория горячей Вселенной дает определенные предсказания о содержании гелия в дозвездном веществе. Как уже упоминалось, распространенность гелия должна быть около 30 процентов по массе.

На гипотезе Гамова исследования разных вариантов начала расширения Вселенной не закончились. В начале 60-х годов были сделаны попытки вернуться к модернизированному варианту холодной Вселенной, который предсказывал превращение всего вещества не в гелий (как в прежнем варианте), а в чистый водород. При этом предполагалось, что остальные элементы формировались гораздо позже уже в звездах.

Первоначально теории горячей и холодной Вселенной связывались с попытками дать полное объяснение распространенности химических элементов в дозвездном веществе. Попытки выяснить, какая теория верна, сначала направлялись в основном по пути анализа наблюдений распространенности химических элементов. Однако такие наблюдения и в особенности их анализ очень сложны и зависят от многих предположений. Если бы теории можно было проверять только по распространенности химических элементов во Вселенной, то выявить истину было бы сложно. Ведь не так-то просто разобраться, сколько гелия и других элементов синтезировано в ядерных процессах в звездах, а сколько осталось от процессов в ранней Вселенной.

К счастью, есть другой способ проверки. Теория горячей Вселенной дает важнейшее наблюдательное предсказание, которое является прямым следствием «горячести». Это предсказание существования во Вселенной в нашу эпоху электромагнитного излучения, оставшегося от той эпохи, когда вещество в прошлом было плотным и горячим.

В процессе космологического расширения вещества температура его падает, падает и температура излучения, но все же и к настоящему моменту должно остаться электромагнитное излучение с температурой (в разных вариантах теории) от долей градуса до 20—30 градусов по Кельвину (физики говорят — Кельвинов).

Такое излучение, которое должно остаться с древних эпох эволюции Вселенной, если она действительно была горячей, получило название реликтового. Это название было впервые предложено советским астрофизиком И. Шкловским. Электромагнитное излучение со столь малой температурой представляет собой радиоволны с длиной волны в сантиметровом и миллиметровом диапазонах. Решающим экспериментом по проверке того, была ли Вселенная горячей или холодной, являются, следовательно, поиски такого излучения. Если оно есть, Вселенная была горячей, если его нет — холодной.

Как было открыто реликтовое излучение 

История открытия реликтового излучения весьма поучительна. Уже в первых работах Г. Гамова, Р. Альфера, Р. Хермана было отмечено, что во Вселенной должно остаться от ранних эпох реликтовое излучение с температурой около 5 градусов абсолютной шкалы Кельвина. Казалось бы, это предсказание должно было обратить на себя внимание астрофизиков, а те, в свою очередь, должны были заинтересовать радиоастрономов, с тем чтобы попытаться обнаружить предсказанное излучение. Но ничего подобного не произошло. Историки науки и специалисты до сих пор гадают, почему никто не пытался сознательно искать реликтовое излучение. Прежде чем обращаться к этим догадкам, давайте проследим цепь фактических событий, приведших к самому открытию.

В 1960 году в США была построена радиоантенна, предназначенная для приема отраженных сигналов от спутника «Эхо». К 1963 году эта антенна уже была не нужна для работы со спутником, и два радиоинженера, Р. Вилсон и А. Пензиас, в лаборатории компании «Белл» решили использовать ее для радиоастрономических наблюдений. Антенна представляла собой 20-футовый рупорный отражатель. Вместе с новейшим приемным устройством этот радиотелескоп был в то время самым чувствительным инструментом в мире для измерения радиоволн, приходящих из космоса с широких площадок на небе. Телескоп предназначался в первую очередь для измерения радиоизлучения, рождающегося в межзвездной среде нашей Галактики. Эта работа должна была быть интересной, но в общем-то ординарной среди большого количества радиоастрономических наблюдений. Во всяком случае, А. Пензиас и Р. Вилсон не собирались искать никакое реликтовое излучение, да и о самой теории горячей Вселенной они тогда и слыхом не слыхивали.

Первые измерения проводились на длине волны 7,35 сантиметра.

Для точного измерения радиоизлучения Галактики необходимо было учесть все возможные помехи. Такие помехи могут быть разного рода. Так, их вызывает рождение радиоволн в земной атмосфере, радиоизлучает также и поверхность Земли. Кроме того, помехи вызываются движением электрических частиц в антенне, в усилительных электрических цепях и приемнике. Все возможные источники помех были тщательно проанализированы и учтены.

Тем не менее А. Пензиас и Р. Вилсон с удивлением констатировали, что, куда бы их антенна ни была направлена, она воспринимает какое-то излучение постоянной интенсивности. Это не могло быть излучением нашей Галактики, ибо в этом случае интенсивность его менялась бы в зависимости от того, смотрит ли антенна вдоль плоскости Млечного Пути или поперек. Кроме того, в этом случае ближайшие к нам галактики, похожие на нашу, тоже излучали бы на длине волны 7,35 сантиметра. Но такого их излучения обнаружено не было.

Оставалось две возможности: либо это «шумят» какие-то неучтенные помехи, либо это излучение, приходящее из далеких просторов космоса. Подозрения пали на возможные помехи в антенне. Так возникла «загадка антенны». Предоставим далее слово одному из авторов измерений, Р. Вилсону, рассказывающему, как они проверяли возможность помех, возникающих в антенне. «Таким образом, антенна у нас оставалась единственным возможным источником избыточного шума... Большая часть потерь антенны происходила в ее горловине маленького диаметра, которая была сделана из химически чистой меди. Мы исследовали подобные волноводы в лаборатории и внесли исправления в расчеты потерь за счет неидеальности поверхностных условий, которую мы обнаружили в таких волноводах. Остальная часть антенны была сделана из склепанных алюминиевых листов, и, хотя мы не ожидали здесь каких-либо неприятностей, мы не могли исключить возможности потерь в местах склепки. Чтобы проверить это, мы поместили пару голубей в той небольшой части рупора, где она соприкасается с теплой кабиной. Вскоре они подобно своим городским собратьям покрыли всю внутренность белым веществом. Мы выпустили голубей и почистили внутренность антенны, но получили лишь небольшое уменьшение температуры антенны. В течение этого времени проблема температуры антенны оставалась нерешенной.

Весной 1965 года, закончив измерения потока, мы основательно почистили 20-футовый рупорный

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату