и такие, что запросто умещаются на небольшом лабораторном столе.

Осенью 1963 года сотрудники Физического института имени П. Н. Лебедева установили лазер в фокусе телескопа имени Г. А. Шайна (Крымская астрофизическая обсерватория) — этот уникальный астрономический инструмент с диаметром зеркала 2,6 метра по своей оптической мощности занимает первое место в Европе, а по качеству изображения не уступает крупнейшему в мире рефлектору на горе Маунт Паломар (США). Понятно, почему именно на него пал выбор московских физиков. Но на сей раз дальнозоркий крымский «циклоп» не ловил сияния далеких, светил: он сам стал прожектором.

Его нацелили на Луну. На затененном участке нашего естественного спутника заиграл зайчик. Не очень яркий: отраженный сигнал, попав в зрачок второго телескопа, оказался в миллиарды миллиардов раз слабее первоначального, посланного с Земли. И все же его уловил чувствительный прибор.

Световое зондирование небесных тел позволит в десятки, если не в сотни, раз точнее определять расстояния до различных участков той или иной планеты, чем с помощью радиолокации.

«Гиперболоид инженера Гарина», вызванный к жизни воображением А. Н. Толстого, разрезал световым «скальпелем» сталь броненосцев, словно дальнодействующий автогенный аппарат. Герой этого фантастического романа тоже использовал систему зеркал, собирая в нерасходящийся пучок лучи от ослепительно белого пламени, которое давали некие таинственные «пирамидки».

Ну, а лазер?

Уже сегодня его луч пробуравливает самые тугоплавкие металлы, самые твердые материалы.

Например, бритвенное лезвие с расстояния в 10 метров.

Именно так специальными агрегатами, созданными в Московском научно-исследовательском институте металлорежущих станков, прожигаются наитончайшие калиброванные каналы в различных промышленных изделиях. Скажем, в рубиновых камнях для часовых механизмов.

Такая неуловимо-нежная, неосязаемая субстанция, а действует под стать тарану-долоту! Или ракетному двигателю.

Есть идея — корректировать траектории искусственных спутников, направляя на них с Земли лазерный луч. Свет будет «отталкивать» рукотворную «луну» и не даст ей раньше времени сгореть в плотных слоях атмосферы. Что это — давление света?

«Я, кажется, сделал очень важное открытие в теории движения светил, специально комет… Сообщил Винеру, сперва он объявил, что я с ума сошел, а на другой день, поняв, в чем дело, очень поздравил». Это отрывок из письма великого русского физика Петра Николаевича Лебедева. Сумасбродный немецкий ученый Винер поначалу счел ныне общепризнанную астрономическую истину: хвосты комет направлены всегда в сторону от Солнца потому, что их отталкивает свет нашей дневной звезды. Такой вывод следовал из электромагнитной теории англичанина Максвелла. Но оспаривался крупнейшими авторитетами, в их числе лордом Кельвином, имя которого присвоено абсолютной шкале температур. Изящнейшими экспериментами Лебедев неопровержимо доказал: механическое давление света — факт. К. А. Тимирязев рассказывал, как в 1903 году лорд Кельвин обратился к нему со словами:

— Вы знаете, что я не поддавался на аргументы Максвелла. А вот перед опытами вашего Лебедева пришлось сдаться…

Световое давление в повседневной жизни совершенно неощутимо, его обнаруживают лишь очень чувствительные приборы. Однако при фокусировке лазерного излучения в малых объемах создается до того высокая концентрация энергии, что световой напор может достигнуть миллиона атмосфер! Правда, в случае со спутником, освещенным с Земли, этот эффект почти не скажется; он перекроется другим, куда более заметным: с поверхности космического аппарата, нагретой лазерным лучом, начнут отрываться атомы и молекулы — такое испарение создаст реактивную силу, противодействующую тяготению.

Знаменательно, что идеи «силовой оптики» получили блестящее развитие в трудах того самого института, который носит имя П. Н. Лебедева. Именно там работают академики Н. Г. Басов и А. М. Прохоров. Там (и не только там) работают их многочисленные ученики. Следуя традициям передовой русской науки, обогащая ее наследие, они умножают ее добрую славу. Но у преемников Лебедева иная судьба.

Вынужденный подать в отставку в знак протеста против произвола царского министра, Лебедев в 1911 году был выдворен из университетской лаборатории. Виртуоз физического эксперимента оказался фактически за бортом большой науки. Тяжело переживая злосчастную участь дела, которому он отдал целых 20 лет, 45-летний профессор слег в постель и больше не поднялся, так и не дожив до триумфального стокгольмского эпилога (кандидатуру Лебедева выдвинули на соискание Нобелевской премии).

Преждевременно скончавшийся, а вернее — сведенный в могилу в расцвете творческих сил, Лебедев не увидел послеоктябрьскую Россию. Но дело, начатое им, нашло в новых условиях достойных продолжателей. Впрочем, пора вернуться к лазерам.

Недавно советские инженеры превратили световую рапиру в паяльник. Это станок-автомат. Он скрепляет крохотные, с типографскую точку, детальки электронных схем. Точечную сварку можно вести в самых труднодоступных местах, через узкие щели, через прозрачные перегородки. А другими подобными аппаратами даже сквозь стекловидное тело глазного яблока.

В 1964 году в Украинском научно-исследовательском институте глазных болезней и тканевой терапии имени академика В. П. Филатова успешно опробован новый способ «приваривания» к глазному дну отслоившейся от него сетчатки. В 1966 году сдан в серийное производство офтальмокоагулятор ОК-1. Пациент не успевает ни увидеть, ни почувствовать вспышку — настолько кратковременно и деликатно прикосновение необычного скальпеля.

«В одну телегу впрячь не можно коня и трепетную лань», — гласит знаменитая сентенция, противопоставляющая грациозную легкость грубоватой силе.

Чудодеи квантовой физики сплавили воедино, казалось, несовместимое — деликатность и резкость, слепую мощь и ювелирную точность. Миллионы лошадиных сил — у светового импульса мощность может быть больше, чем у Братской ГЭС. Правда, это всего-навсего блицпревосходство, оно существует постольку, поскольку скоропреходяще, мгновенно — энергия, выделяющаяся за миллионные доли секунды, обеспечила бы собой лишь кратковременную вспышку лампочки карманного фонарика.

В 1965 году профессора А. М. Прохоров и С. Л. Мандельштам пробовали ионизировать газы: лазерный луч у них своим электрическим полем вызывал пробой в воздухе. Профессор Н. Г. Басов пытается с той же целью вести световой обстрел твердых мишеней. Полагают, что так со временем удастся получать высокотемпературную плазму. А в отдаленном будущем — инициировать термоядерный синтез и управлять им.

Первенцем квантовой электроники, как известно, явился мазер — источник сантиметровых и миллиметровых радиоволн. Термин составлен из первых букв английской фразы, переводящейся примерно так: «Усиление микроволн посредством индуцированного излучения». Еще более коротковолновые (а следовательно, и более высокочастотные) колебания генерирует лазер; здесь вместо «м» («микроволны») фигурирует сокращение «л» («лайт» — значит «свет»). Он работает в видимой области спектра. Ради краткости все члены этого непрерывно плодящегося семейства часто именуются собирательно — просто «лазеры».

Дорогами разведчиков

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату