словом, чем объяснить то необычайное разнообразие видов в царстве фауны и флоры? Ведь мир живого начинал свою родословную с примитивнейших организмов!

Дарвин полагал, что, несмотря на весь свой биологический консерватизм, организмы способны изменяться, а их виды — эволюционировать, развиваться по разным направлениям. Но лишь в XX веке был вскрыт внутренний механизм изменчивости.

В 1899 году, за год до воскрешения менделизма, русский ученый академик С. И. Коржинский обосновал идею мутаций — отклонений от наследственной программы, полученной от родителей. А в 1926 году в «Журнале экспериментальной биологии» появилась статья «Некоторые моменты эволюционного учения с точки зрения современной генетики», написанная профессором С. С. Четвериковым. В ней Сергей Сергеевич, развивая линию, намеченную еще Тимирязевым, впервые поставил дарвинизм на фундамент менделизма, синтезировал оба учения, нашел тот перекресток обоих направлений, откуда началась столбовая дорога современной биологии.

Выдающийся советский генетик сделал вывод: изменчивость организмов обусловлена точечными мутациями в хромосомах, случайными опечатками при стереотипном переиздании наследственной программы. Такая ошибка выражается едва заметным искажением какого-то одного, причем крохотного звена в длинной хромосомной цепочке. Отклонения в свойствах у животного или растения при этом могут быть и малозаметны и настолько значительны, что повлияют на всю судьбу существа и его рода. Если новый признак благоприятен для его носителя, он облегчит ему борьбу за «место под Солнцем», позволит ему выжить в процессе естественного отбора и передать новую черточку потомкам. Если нет — организм погибнет, его династия оборвется. Так когда-то внезапное изменение в генотипе некоторых обезьян направило развитие их потомков по боковому руслу, привело к появлению человека. А теперешние гориллы, орангутанги, шимпанзе и их сородичи — представители иной эволюционной ветви.

Без мутаций нет эволюции. Разумеется, и без них комбинативная изменчивость обеспечила бы довольно богатое разнообразие признаков. Но богатое лишь в пределах того генофонда, который отпущен природой виду. Раздвинуть же его рамки, пополнить его могут только мутации. Пополнить новыми факторами, определяющими строение, облик, поведение, а в конечном счете судьбу организма.

Именно мутации поставляют новый материал для естественного отбора. Они как бы выступают с новыми предложениями перед равнодушным и неумолимым судьей, обрубающим нежизнеспособные побеги на генеалогическом древе и пропускающим в будущее лишь те из них, что наилучшим образом гармонируют с суровыми условиями окружающей среды.

Тайнопись наследственности? Она уже у корректора

В 1920 году в Саратове собрались селекционеры всей России. Один из докладов приковал к себе всеобщее внимание теоретически интересным и практически важным выводом: у родственных растений схожи и мутации.

Вот, например, хлебные злаки. У пшеницы 8 видов: твердая, мягкая, карликовая и другие. В каждом из них при определенных условиях бывают формы озимые и яровые, красноколосные и белоколосные, остистые и безостые, краснозерные и белозерные. То же генетическое многообразие наблюдается у ржи, овса, ячменя. Эти семейства можно расположить параллельными колоннами так, чтобы в одной шеренге очутились разновидности с аналогичными признаками. Получится классификация, напоминающая периодическую систему элементов. В ней, как и в первом варианте менделеевской таблицы, некоторые клетки окажутся пустыми. Но почему бы не заполнить вакансии гипотетическими, пока не известными ботаникам организмами, опираясь на принцип подобия? Так в свое время поступил Менделеев, предсказавший существование еще не открытых тогда «простых химических тел» и точно описавший их ожидаемые свойства.

Профессор В. Р. Заленский, один из делегатов, сказал: «Съезд стал историческим. Биология будет приветствовать своего Менделеева».

Докладчиком был Николай Иванович Вавилов.

Сформулированный им закон гомологических (основанных на сходстве) рядов позволяет предвидеть, какие мутации могут возникать у того или иного растения, если они обнаружены у его родича или 258 предка. А в 1939 году ученый объяснил причину найденной им периодичности.

В том же году болгарский биолог академик Дончо Костов говорил: «Академик Вавилов — самый популярный ученый на свете; хотя он еще сравнительно молод, нет уголка на Земле, где не знают его имени». Действительно, Николай Иванович числился почетным членом лондонского Королевского общества, Шотландской, Индийской, Чехословацкой академий наук, дюжины научных обществ и университетов разных городов — от Софии до Мехико. На обложке международного журнала «Наследственность» приведен список величайших биологов мира.

Сразу после имен Дарвина, Менделя и нобелевского лауреата Моргана стоит Vavilov.

Проводя аналогию между вавиловским и менделеевским открытиями, профессор Заленский едва ли мог тогда предполагать, насколько она глубока.

В самом деле, природа периодичности в свойствах химических элементов была объяснена лишь после того, как физики разобрались в структуре атома.

Концепция «неделимого» потерпела крах. Та же судьба ожидала и генетику.

В 1928 году Н. П. Дубинин, работавший тогда под руководством профессора А. С. Серебровского, изучал изменения внешнего облика, искусственно вызванные рентгеновским излучением у дрозофилы (плодовой мухи). Он убедился, что теория Моргана, считавшая точечную мутацию преобразованием всего гена как элементарной, не дробимой далее единицы, не соответствует экспериментальным фактам.

Дубинин построил линейную модель гена, где былой «неделимый» предстал расчлененным на дольки — Николай Петрович назвал их «центрами».

Оказалось, что хромосомы могут обмениваться не только целыми генами, но и их фрагментами. Что отдельные элементы этой сложной структуры не индивидуалисты; они взаимодействуют друг с другом, и их влияние на организм зависит от положения среди соседей.

На новую концепцию с уничтожающей критикой обрушился маститый немецкий биолог Рихард Гольдшмидт. Но теория центров восторжествовала. За ее разработку Дубинин в 1933 году удостоился международной Рокфеллеровской премии.

Нападали не только теоретики, но и практики.

И не только зарубежные. «К чему делать из мухи слона? — язвили люди, далекие от подлинной науки. — Вместо того чтобы повышать продуктивность скота, вы возитесь с какой-то цокотухой. Муховоды!»

«Многие тогда не понимали, что голая эмпирика, господствовавшая в работе большинства селекционеров, хотя и дает некоторые результаты, однако никогда не сможет без осмысливания, без теории привести к серьезному успеху, — рассказывает академик Н. П. Дубинин. — Большое число (обычно десятки пар) хромосом у животных затрудняет изучение генетических явлений. То ли дело плодовая мушка!

У нее всего четыре пары хромосом. Можно работать с тысячами особей одновременно. Причем следующее поколение появляется всего через каких-нибудь 10 дней. А недавние эксперименты по изучению молекулярной структуры гена, открывшие новую страницу в науке, были поставлены с бактериофагами.

В пробирке каждые 20 минут удается получать новые поколения микробных вирусов, состоящие из миллиардов особей. Если бы подобные исследования пришлось проводить

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату