истинного высказывания не может следовать ложное высказывание. В решении задачи 113 из высказывания «В — рыцарь» следует ложное высказывание «А — лжец». Значит, высказывание «В — рыцарь» должно быть ложным. Это еще один вариант доказательства от противного.
3
Мы сделали это, приняв в качестве посылки высказывание «А — рыцарь», из которого вывели заключение «С — рыцарь». В силу факта (1) об импликации мы заключаем, что если A — рыцарь, то C — рыцарь.
4
Бенвенуто Челлини не без основания слыл хвастуном. Почему бы мне не последовать его примеру?
5
Так как из посылки «золотую шкатулку изготовил кто-то из членов семейства Беллини» следовало заключение «серебряную шкатулку изготовил Челлини». Мы снова воспользовались фактом (4) об импликации (см. последний абзац в преамбуле к гл. 8).
6
См. Гарднер М. Математические головоломки и развлечения. — М.: Мир, 1971, с. 286.
7
См. Гарднер М. Математические новеллы. — М.: Мир, 1974, с. 170.
8
Мне сообщил его философ Ричард Картрайт.
9
Видимо, в задаче пропущено условие о том, что номинабельные не могут входить в клуб неноминабельных.
10
Опять-таки пропущено условие о том, что в клуб подозрительных не могут входить неподозрительные.
11
С точно такой же ситуацией мы уже сталкивались в задаче 134 (о паре шкатулок, изготовленных Беллини и Челлини): одна из шкатулок заведомо должна быть работы Беллини, но установить, какую из двух шкатулок изготовил Беллини, невозможно.
12
Напомним условие H: Для любого числа n существует высказывание, утверждающее, что n — экстраординарное число. Это высказывание (как и всякое другое предложение) имеет гёделев номер. Обозначим его n*. Оказывается, что для любого определимого множества A множество B всех чисел n, для которых n* принадлежит A, также определимо. Поскольку геделев номер n* сопряжен с числом n, то тем самым условие H выполнено.