Аналогичный результат дает умножение частоты рубинового генератора. Его вторая гармоника попадает в фиолетовую часть спектра, а третья дает жесткие ультрафиолетовые лучи.
Пропуская луч квантового генератора через специально выращенные кристаллы, Франкен и его сотрудники первыми смогли зарегистрировать появление излучения удвоенной частоты. Однако коэффициент преобразования был очень мал. Лишь ничтожная доля энергии падающей волны превращалась в энергию волны удвоенной частоты. Хохлов и его сотрудники глубоко проанализировали новое явление и поняли, что причина лежит в различии скоростей обеих волн. В результате, действия различных участков кристалла не складываются, а даже частично уничтожаются. Но уравнения подсказали Хохлову выход из положения. Оказывается, в кристалле можно найти направления, в которых падающая волна и волна с умноженной частотой бегут с такими скоростями, при которых все точки работают согласованно и результаты их действия складываются. При этом большая часть энергии падающей волны превращается в энергию волны с умноженной частотой. Так были созданы весьма эффективные оптические генераторы гармоник.
Перечитав предыдущий абзац, я увидела, что прошла мимо самого интересного. В нем все верно. Да, уравнения подсказали! Но, пока они не написаны, эта фраза лишена истинного смысла. А писать уравнения в такой вот научно-художественной книге не принято. Вернувшись еще немного назад, я прочитала: «в радиотехнике давно применяют...», «физики решили...» Как все просто звучит.
На деле все было весьма не просто. Радиотехника подсказала только цель. Сколько ни освещай лазером радиолампу, диод или транзистор, световой гармоники не получишь. Конечно, физики и не пытались сделать что-либо столь несуразное. Их защищало то, что обычно называют физической интуицией, а по существу — способность применять предыдущий опыт в новых ситуациях. Эта способность вытекает из глубокой общности законов природы и из единства математических методов описания природы. В данном случае речь идет о нели — нейной теории колебаний, разработанной главным образом учеными из школ Мандельштама и Папалекси, Крылова и Боголюбова. Заметим, кстати, что Хохлов и Ахманов принадлежат к третьему поколению школы Мандельштама — Папалекси, о которой нам уже не раз приходилось упоминать.
Нелинейные явления в волновых процессах уже давно встречались акустикам. Теперь они доставляют неприятности каждому из нас громоподобными звуками, возникающими всякий раз, когда самолет преодолевает звуковой барьер. Дело в том, что звук — волна сжатия и разрежения воздуха. Пока звук слаб, он бежит в воздухе без искажения. Только это позволяет нам разговаривать и наслаждаться музыкой. Но если звук слишком силен...
Там где воздух сжат, скорость звука больше, чем в местах разрежения. Поэтому отдельные участки сильной звуковой волны нагоняют другие ее участки. Плавные звуковые волны искажаются. В них возникают крутые фронты, подобные нарастающим отвесным гребням прибоя, все увеличивающимся по мере набегания морских волн на прибрежную отмель. Такие искаженные и все нарастающие фронты звуковых волн, бегущие в воздухе много быстрее, чем обычные звуки, и есть то, чем тревожит нас сверхзвуковая авиация.
Самым важным из всего сказанного было для оптиков то, что самолет, летящий быстрее звука, не возбуждает ударной волны, так же как не появляется она при дозвуковой скорости. Она возникает только, когда скорость самолета близка к скорости звука. Только при таких условиях звук, возбуждаемый летящим самолетом в течение многих периодов звуковой волны, усиливает ее все больше и больше. При этом почти вся энергия двигателей самолета перекачивается в энергию звуковых волн. Двигатели должны иметь большой запас мощности, чтобы оторвать самолет от высасывающих энергию сопутствующих звуковых волн, прорвать звуковой барьер, обогнать жадные волны, уничтожить синхронизм, вследствие которого самолет вынужден тащить на себе массы воздуха, превращающиеся для него в тяжелые путы.
Если бы, не стремясь к скорости, летчик захотел уподобить свой самолет громыхающей колеснице Ильи-пророка, ему пришлось бы лететь точно со скоростью звука.
Именно такую цель ставили перед собой физики: фаза луча лазера должна бежать в веществе точно с той же скоростью, как и фаза порождаемой им волны второй или третьей, а иногда и более высокой гармоники. Здесь приходится применить слово «фаза», для того чтобы не вызвать неудовольствия тех, кто уже привык к этому слову. Те же, кто предпочитает обходиться без него, вполне могут продолжать думать о волне как таковой, имея в виду гребень простой волны, форма которой совпадает с известной каждому школьнику синусоидой.
Задача обеспечения равенства скорости перемещения фаз — фазового синхронизма — осложняется наличием дисперсии, обнаруженной еще. Декартом и подробно изученной Ньютоном. Дисперсия проявляется в том, что во всех реальных средах скорость света зависит от его частоты, а значит, от длины соответствующей волны. Наличие дисперсии привело Ньютона к выводу о неизбежности оптических искажений, он назвал их хроматической аберрацией, в линзовых телескопах. Ошибочный вывод заставил Ньютона перейти к зеркальным телескопам.
Наличие дисперсии, казалось, делает невозможным эффективное умножение частоты света. Действительно, в обычных прозрачных средах, например в газах, жидкостях и стеклах, скорость света уменьшается при увеличении частоты. Значит, в этих средах фазы двух волн, частоты которых различаются вдвое или втрое, не могут бежать с одинаковой скоростью. А следовательно, синхронизм, необходимый для успешной перекачки энергии падающей волны в энергию гармоники, невозможен. Так в нелинейной оптике при первой попытке ее практического применения возник тупик.
История повторяется, но, к счастью, не всегда применимо знаменитое замечание Маркса о том, что в первый раз это трагедия, во второй — фарс. Ошибка Ньютона была вскрыта замечательным математиком Эйлером, который теоретически вывел возможность исключения хроматической аберрации линз. Ему не удалось воплотить это на практике, но английский оптик Диллонд, затратив несколько лет на упорные поиски, создал сложную линзу, объединявшую в себе две линзы, изготовленные из различных сортов стекла с разными законами дисперсии, и, таким образом, добился того, что искажения в одной из них уничтожают искажения в другой. Так в результате взаимной компенсации получается неискаженное изображение. Теперь объективы всех телескопов, биноклей и подзорных труб делаются именно таким способом.
Сходным путем удалось найти и выход из тупика, в который зашла нелинейная оптика. Американские физики Джордмэйн и Терхьюн обратили внимание на то, что условие синхронизма может быть выполнено в двоякопреломляющих кристаллах. Двойное лучепреломление было, как известно, открыто чуть более трехсот лет назад Эразмом Бартолином. Он обнаружил, что луч света, попадая на поверхность кристалла исландского шпата, раздваивается, причем каждая из его частей преломляется по-разному. Одна из них подчиняется закону преломления, найденному Декартом, а другая — нет.
Был бы факт, а объяснение найдется. Так, наверное, говорили и во времена Бартолина, и он нашел объяснение. Бартолин счел, что в кристалле исландского шпата есть поры, которые захватывают второй луч (Бартолин назвал его подвижным) и не дают ему подчиняться закону. Правда, обнаружить эти поры не удавалось, но ведь и другого объяснения тоже не находилось. Даже великий Ньютон не мог сказать здесь ничего определенного. Он начал свою фундаментальную «Оптику» гордым отказом от гипотез:
«Мое намерение в этой книге не объяснять свойства света гипотезами, но изложить их и доказать рассуждением и опытами».
Но, дойдя до догадки Бартолина, он был вынужден ввести гипотезу о том, что световые корпускулы обладают двумя сторонами и их преломление зависит от того, какой стороной они ударяются. Почему это проявляется лишь при ударе о кристалл исландского шпата, а в других случаях нет, так и осталось необъясненным.
Правда, в том же году, когда появилась в свет «Оптика» Ньютона, Гюйгенс сумел объяснить