Френель уехал в деревню. Здесь он начал систематические исследования в области оптики, Средства его были ограничены, столь же бедными были и его экспериментальные возможности. Но мощь интеллекта и привычка обходиться простыми математическими методами позволяли ему извлекать из примитивных опытов поразительные результаты. А инженерная хватка и требовательность к надежности каждого результата делали его опыты безупречными.
Френель начал с изучения теней от малых предметов. В наиболее чистом виде это можно сделать при помощи тонких проволок. И Френель обнаружил систему чередующихся полос, заменяющих резкую границу тени, которую следовало ожидать, исходя из корпускулярной теории. Стоило поднести к проволоке с одной ее стороны край непрозрачного экрана, как светлые полосы внутри тени исчезали. Оставались лишь темные полосы в освещенной части, которые наблюдал еще Гримальди.
Френель объяснил возникновение светлых полос внутри области тени наложением двух частей световой волны, огибающих проволоку с обеих сторон. Так он самостоятельно пришел к пониманию интерференции света.
Впоследствии, узнав о работах Юнга и его опытах с двумя отверстиями и желая полностью отделить явление интерференции от явления дифракции на краях отверстия, Френель придумал опыт с двумя зеркалами и сдвоенной призмой. Это позволило ему расщеплять и вновь сводить вместе световые волны, проходящие через узкую щель, и наблюдать прекрасные интерференционные картины, знакомые теперь любому школьнику.
Френель объединил принцип интерференции с методом элементарных волн и огибающей волны, введенным Гюйгенсом. Получилась законченная система. Притом элементарные волны и их огибающая уже не были чисто геометрическим понятием и способом построения, как у Гюйгенса, но стали самой сущностью световой волны. Френель не ограничился этим, он дал математическую формулировку волновой теории света.
Он показал, что отдельные участки волнового фронта, исходящего из светящейся точки, порождают вторичные волны таким образом, что они полностью гасят друг друга — все, за исключением небольшой центральной части, расположенной на прямой, соединяющей источник света с освещаемой точкой.
Так был разрешен вековой парадокс, стоявший на пути волновой теории света. Найдено объяснение прямолинейных световых лучей, возникающих и остающихся узкими, несмотря на волновую природу света. Вот оно: все волны, отклоняющиеся от прямой, полностью гасят друг друга. Все они гасятся, не препятствуя распространению узкого луча, состоящего из центральных участков волн, бегущих прямолинейно.
Френель сумел математически рассчитать все детали процесса, приводящего к огибанию световых волн вокруг краев предметов, указав, в частности, как этот процесс зависит от длины волны. Так была наконец построена теория дифракции.
Великие математики — Лаплас и Пуассон, а также некоторые физики считали инженера Френеля дилетантом и в математике. Первые статьи Френеля о дифракции подверглись их критике за отсутствие математической строгости.
Через несколько лет Френель заново формулирует свои результаты и представляет их на конкурс Парижской академии наук. Работу рассматривает специальная комиссия — Лаплас, Пуассон, Араго, Био, Гей-Люссак. Трое первых — убежденные ньютонианцы, сторонники корпускулярной теории света. Араго склонялся к волновой теории света, но, как экспериментатор, не мог противостоять безупречной математической логике Лапласа и Пуассона. Гей-Люссак занимался исследованием свойств газов, химией и изучением множества частных вопросов, ни один из которых не имел отношения к оптике. Академики понимали, что Гей-Люссак не может являться авторитетом по существу работы Френеля, но, по-видимому, ввели его в комиссию в расчете на его беспристрастие и безупречную честность. Впрочем, научная добросовестность всех членов комиссии была выше всяких подозрений.
Пуассон столь глубоко изучил мемуар Френеля (в то время термин «мемуар» имел значение современного термина «монография»), что сумел обнаружить удивительный вывод, следующий из расчетов Френеля. Из расчетов следовало, что в центре тени непрозрачного диска надлежащих размеров должно быть светлое пятно. Пятна должны исчезать и появляться вновь по мере отодвигания от диска экрана, на котором наблюдается это явление.
Более того, на оси, соединяющей точечный источник света с небольшим отверстием, тоже должны наблюдаться чередования света и тени. Согласовать такой парадокс с представлением о корпускулах, летящих вдоль луча света, было невозможно.
Комиссия согласилась с мнением Пуассона о том, что это противоречит здравому смыслу, и предложила Френелю подтвердить свою теорию опытом. Комиссия считала, что такой опыт решит давний спор между волновой и корпускулярной теориями.
Араго помог Френелю выполнить решающий эксперимент. «Здравый смысл» был посрамлен, Френель получил премию, волновая теория света, казалось, восторжествовала навсегда. Однако в это время из пучин научного океана выглянула скала, грозившая потопить прекрасный корабль волновой теории Френеля.
Мало известный теперь физик Малюс обнаружил, что свет поляризуется не только при прохождении через исландский шпат, но и при простом отражении или преломлении на границе двух сред. Открытие Малюса легко объяснялось свойствами корпускул света, которым Ньютон приписывал асимметрию или полярность. По его выражению, каждый луч света имеет две стороны. Поэтому явления поляризации света считались в то время сильнейшим аргументом в пользу корпускулярной теории.
Блестящая интуиция Френеля заставила его пренебречь авторитетом Ньютона. Он пошел по пути Гюйгенса, от которого он заимствовал аналогию световых волн с акустическими. Он понимал, что волновая теория не способна объяснить опыты Малюса и все известное людям до и после него о поляризации света, если не считать волны света поперечными, подобными тем, что каждый видел на поверхности воды. Такое предположение выдвигали еще Гримальди и Гук, но в остальном их представления о световых волнах были наивными и туманными. Но во времена Френеля о поперечности световых волн уже не думал никто. Не помышлял о поперечности световых волн и Френель. Из его ранних статей, докладов и писем неясно, пытался ли он, оставаясь в рамках гипотезы продольных волн, справиться с проблемой поляризации или просто пренебрег этой трудностью во имя объяснения всех остальных известных ему свойств света. Ясно одно. Френель убежден в несостоятельности корпускулярной теории. Ньютоновское объяснение поляризации казалось ему столь неубедительным, что он считал его несуществующим. А если так, то единственный грех волновой теории он не считал смертным грехом.
Известно, что Био и Араго тоже провели ряд замечательных исследований в области поляризации света. Работы Био чрезвычайно укрепили его уверенность в справедливости корпускулярной природы света. Араго открыл поляризацию рассеянного света неба и обнаружил хроматическую поляризацию, но, считая важным лишь обнаружение новых фактов, в надежде на то, что со временем они улягутся в рамки будущей теории, он предпочитал не задумываться над трудностями, казавшимися ему непреодолимыми. Араго вместе с Френелем систематически изучал интерференцию поляризованных лучей. В ходе работ они совместно установили, что два луча света, поляризованные в параллельных плоскостях, способны интерферировать между собой, в то время как лучи, поляризованные перпендикулярно, не гасят друг друга никогда!
Для того чтобы осознать весь драматизм возникшей ситуации, необходимо встать на точку зрения ученых первой четверти прошлого века. Ведь, отказываясь от корпускулярной теории света, они имели только один путь — считать свет волнами эфира. О свойствах эфира в то время предпочитали не говорить. Давно прошли времена, когда можно было обсуждать размер и форму частиц эфира и спорить о том, состоит ли он из частиц или является плотной жидкостью. Опыт, этот кумир нового времени, не давал для таких суждений никаких оснований. Ученые поклонялись фактам. Известно лишь, что эфир не препятствует движению тел. Ни вечному вращению планет, ни движению малых тел, ускорения и скорости которых можно изменять и измерять в ходе опытов.