ниже вершины купола реактора. Поэтому, такие подземные реакторы удобно располагать на склоне, чтобы избежать лишних земляных работ.

При нормальной эксплуатации шлам из буферной емкости ежедневно вычерпываю в объемах, соответствующих объему принятых фекальных стоков. Шлам используют в качестве биоудобрения.

Конструкция эта достаточно простая, не требует дефицитных материалов. Но работать она будет только в теплом климате. Даже если сделать стенки такого реактора в виде термоса, чтобы теплоизолировать их от окружающего грунта, мы не сможем полностью исключить отток тепла в холодное время года. При падении температуры внутри реактора ниже 200C выделение биогаза практически прекратится.

Также у этой конструкции есть недостаток – на дне реактора постепенно скапливается песок, или прочие тяжелые осадки. Поэтому время от времени такой реактор надо вскрывать и чистить. Как Вы сами понимаете, во-первых, это усложняет конструкцию реактора, а во-вторых, сама процедура чистки – весьма грязная и трудоемкая.

8.2. Гибкий ферментатор.

Вторая достаточно древняя и простая конструкция – гибкая «кишка», расположенная в яме или свободно лежащая на земле. На концах такой «кишки» делаются входная и выходная трубы, через которые поступает субстрат и сливается шлам. Буферная емкость для шлама уже не нужна. Важно только, чтобы слив из выходной трубы находился ниже горловины заливной трубы. Такая труба тоже служит одновременно реактором и газгольдером. Но рабочий объем газгольдера в такой системе может быть очень большим. Если кишку выложить просто на ровную поверхность, субстрат будет пытаться растекаться в стороны внутри кишки, натягивая ее стенки, а они, в свою очередь будут создавать давление в биогазе внутри кишки. Таким образом, давление биогаза внутри кишки будет задаваться уровнем субстрата внутри нее. А этот уровень, в свою очередь будет зависеть от длины кишки, ее диаметра и объема субстрата внутри нее. Объем субстрата задается уровнем слива из выходной трубы. Рабочий объем газгольдера этого реактора будет очень большим, приемлемое давление биогаза будет поддерживаться в очень широких пределах изменения объема биогаза внутри кишки. Поэтому такая конструкция хорошо подходит для летнего периода, когда потребность в биогазе возникает эпизодически.

В наше время удобно делать такую конструкцию из тепличной пленки, которая продается в виде трубы. Для надежности можно вложить одну трубу в другую, чтобы уменьшить вероятность разрыва. Стоимость такой пленки из полиэтилена очень низкая. Желательно брать пленку черного цвета. Подстилающая поверхность должна быть ровной без острых фрагментов. Если грунт сильно остывает, то надо подложить слой утеплителя.

Выходную и выходную трубы можно заменить гидрозатворами, которыми будут заканчиваться концы кишки. Через один из гидрозатворов можно пропустить газовую трубу, чтобы не нарушать целостность стенок кишки.

Недостатком такой конструкции является большая занимаемая площадь, ведь уровень субстрата в свободно лежащей кишке не буде подниматься выше 30 см, чтобы избыточное давление не порвало кишку. Выход есть в усовершенствовании конструкции. Необходимо сделать по всей длине кишки канаву, куда опустится часть кишки. Но часть кишки будет расплескиваться по краям канавы, формируя газгольдер. Такое решение позволяет и сэкономить площадь, и сохранить относительно высокий рабочий объем газгольдера. Но при этом надо укрепить стенки канавы от осыпания и теплоизолировать их, так как грунт на глубине уже может быть холодным. Также надо обеспечить защиту от попадания и скапливания осадков в этой канаве, так как они нарушат теплоизоляцию.

Эту конструкцию можно еще усовершенствовать, проложив внутри кишки трубы обогрева и установив погружной миксер. Если при этом расположить такую кишку внутри теплицы, то можно попытаться эксплуатировать ее даже зимой.

8.3. «Всепогодная» установка.

В наших широтах малые биогазовые установки чаще всего делают с использованием примерно той же конструкции, что и у больших промышленных установок. Такая малая установка состоит из подготовительной емкости для субстрата, системы подачи субстрата в реактор, утепленного реактора, системы поддержания температуры в реакторе, системы перемешивания субстрата в реакторе, системы слива субстрата из реактора, приемника шлама, газгольдера, системы вывода биогаза и подачи его потребителям, блока автоматики блока теплоснабжения. В результате получается достаточно дорогая и сложная конструкция, но она способна функционировать круглый год в наших климатических условиях.

Все емкости для таких установок обычно подбирают из готовых изделий, имеющихся в продаже. Гораздо реже их изготавливают самостоятельно. Дело в том, что к материалу стенок таких емкостей предъявляются высокие требования по коррозионной и абразивной стойкости. Металл требует специальных недешевых покрытий. Бетон годится только специальных недешевых марок. Поэтому почти идеально подходят нейтральные полимерные материалы – полиэтилен, полипропилен. Обычно в продаже присутствуют цилиндрические емкости из полиэтилена, изготовленные в заводских условиях методом ротационного формования. Объем таких цилиндров достигает 15 м3, встречаются также предложения на 20 и 30 м3. По всем параметрам трудно подобрать что-то более подходящее.

В качестве подготовительной емкости обычно выбирается горизонтальный цилиндр или параллелепипед. Есть три способа подачи субстрата из подготовительной емкости в реактор: вручную, самотеком и насосом.

Для подачи самотеком подготовительная емкость размещается выше реактора. После приготовления субстрата открывается заслонка или затычка в днище этой емкости, и субстрат сливается в реактор по входной трубе.

Для подачи насосом или вручную подготовительная емкость размещается в непосредственной близости к реактору. Если надо заливать субстрат вручную, то подготовительная емкость делается с открытым верхом, чтобы можно было черпать субстрат ведром. Возле входной трубы ставится стремянка, а на горловине входной трубы – раструб. Необходимо подниматься по стремянке и заливать субстрат из ведра в раструб. Понятно, что делать такую процедуру можно один-два раза в день, заливая за один цикл десяток-другой ведер субстрата. Тогда это будет занимать приемлемое время. Если суточные объемы субстрата больше, или техпроцесс требует частой порционной подачи субстрата, необходимо применять автоматизированную подачу субстрата насосом. Такая порционная подача нужна при применении быстроокисляющихся и высокопитательных субстратов. Субстраты из навозов допустимо загружать один раз в сутки, хотя это и не оптимизирует техпроцесс.

Для приготовления субстрата в подготовительную емкость засыпают/заливают исходное сырье, добавляют необходимое количество воды и перемешивают. Мешать можно вручную, а можно с помощью электрического миксера. Сделать такой миксер можно самостоятельно самыми различными способами. Но технологически и экономически он оправдан только при необходимости порционной подачи сырья. Тогда еще в подготовительную емкость помещается погружной фекальный насос. При приготовлении субстрата миксер включается вручную и работает до полной гомогенизации субстрата. В процессе суточной работы по расписанию автоматика включает миксер, перемешивая субстрат, а сразу после этого включается насос и закачивает в реактор заданную порцию субстрата. Самый простой, но очень грубый способ отмерить заданную порцию – временной. Насос включается на заданное время. Время это настраивается так, чтобы насос качал немного с избытком, тогда к исходу суток подготовительная емкость будет опустошена. Возможный остаток субстрата можно закачать в реактор, включив насос вручную, перед приготовлением новой порции субстрата.

В случае ручной подачи субстрата ил подачи самотеком, подготовительную емкость не обязательно надо содержать в теплом месте. Достаточно быстро приготовить субстрат, используя теплую воду, и быстро

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату