к центральной спирали 242 + 1 сначала узоров левой периферии, затем правой.
Схема записи первого тропического года:
242 + 1 > 63 > 45 > 14 = 365
Схема записи второго тропического года:
242 + 1 > 57 > 54 > 11 = 365.
Рациональность такого порядка счета времени с помощью знаков спиральных блоков, каждый из которых в отдельности обязательно кратен трем[28], можно подтвердить следующими соображениями.
Если за начало отсчета принять соседнюю со сквозным отверстием лунку центральной спирали и условиться, что она есть день летнего солнцестояния, то это позволит определить очень заметную позицию знака, обозначающего день зимнего солнцестояния. Оно придется на лунку, на которой завершается раскрутка внутренних витков центральной спирали и начинается отсчет времени по внешнему ее витку (здесь находится выход из круговертей спирали). В таком случае на последнюю лунку внешнего витка центральной спирали придется начало последней декады февраля, как раз тот знаменательный момент, когда после 60 суток со дня зимнего солнцестояния вечером восходит Арктур, знаменующий приближение весны.
Число лунок в центральной спирали (243) примечательно и тем, что близко наименьшему целому числу дней между, скажем, двумя минимумами скорости перемещения Луны по небосводу (так называемая зигзагообразная функция). Такой календарный блок, важный для предсказания затмения, покрывает около девяти колебаний скорости Луны или почти девять аномалистических месяцев (уравнение, исток которого возводился ранее к астрономии времен античности). Число лунок в этом блоке близко продолжительности девяти сидерических месяцев, что важно для выявления методов наблюдения за Луной в эпоху палеолита (можно говорить о точной фиксации перемещений ее на фоне звезд, а не просто о слежении за фазами, достаточном при синодическом счислении времени). О том же самом свидетельствует количество лунок в периферийных узорах как левой, так и правой окраин пластины. Их число в том и другом случае соответствует длительности в сутках 4,5 аномалистического или сидерического месяцев, а вместе — 9, то есть их столько же, сколько в лунках центральной спирали. Это стремление выделить в тропическом (солнечном) году лунные циклы представляется чрезвычайно важным для определения истинного характера календаря.
При счислении времени по знакам нижних боковых спиралей весьма заметными оказываются позиции лунок, определяющих момент весеннего равноденствия (знаки между закрученными в разные стороны витками спиралей 62(63) и 57 + 1), а также одного из важнейших подразделений майского календаря, границы которого приходятся на 5–7 мая (лунка между закрученными в разные стороны витками спирали 45 и лунка входа в лабиринт внутренних витков спирали 54). Что касается отражений в этих блоках счисления времени по лунному календарю, то обращает на себя внимание кратность
В любом случае в солнечном календаре мальтинской пластины с достаточной очевидностью просматриваются признаки календаря лунного, и это весьма существенная деталь. Она, возможно, раскрывает признаки оригинального, не имеющего аналогов, комбинаторного счисления времени, когда счет его велся в течение года в основном по Солнцу, а слежение по месяцам за Луной, как и в случае со знаковой системой ачинской скульптуры, поочередно было то сидерическим, то синодическим. Если это так, то становится понятным, почему, допустим, неодинаковое количество лунок включалось в спирали 62(63) и 57 + 1, хотя та и другая призваны были наглядно представить позиции весеннего равноденствия. Все дело в том, что превышение на трое суток двух синодических месяцев в первом году удовлетворительно компенсировалось недобором их при счислении второго года. В самом деле,
63: 29,5306 = 2,1333,
57: 29,5306 = 1,9302.
При таком варианте расшифровки записей остается убедительно ответить на вопрос: что предопределяло включение различного количества лунок в структуры левой и правой периферий орнаментальной композиции пластины, если продолжительность тропического года была известна палеолитическому человеку Сибири с точностью до суток? Не проще ли было ограничиться выбором одного из приведенных выше вариантов годового счисления времени по Солнцу? Разумеется, проще. Если бы не было острой необходимости следить одновременно и за Луной.
Бросается в глаза весьма примечательное обстоятельство: блоки лунок в структурах позволяют получать характерные календарно-астрономические записи.
242 + 1 > 57 > 54 = 354. Каждый из блоков этой системы кратен трем.
Можно «прочесть» и календарный период, на который тропический год, представленный, положим, центральной спиралью и узорами
Если к этим двум записям добавить третью — приведенную выше запись первого тропического года, то, как нетрудно заметить, они исчерпывают орнаментально-числовые структуры пластины полностью. Примечательно, что при подобной комплексной по характеру реконструкции центральная спираль используется дважды — в сочетании ее со всеми структурами
Неиспользованными остаются лунки змеевидной линии 11, как бы наглядно демонстрируя, на какой календарный период тропический год отличается от лунного. При таком понимании структуры орнамента мальтинской пластины приобретает особый смысл счисление по узорам