вертикальных профилей концентрации аргона и азота с измеренными позволило оценить коэффициент турбулентного перемешивания на различных высотах, варьирующий от 2,1–5,0?107 см2/с на уровне 100 км до 1,2–4,2?109 см2/с на высоте 170 км. Модельные расчеты вертикальных профилей концентрации СО, NO и О2 обнаружили хорошее согласие с результатами измерений.

В работе [75] построена модель марсианской ионосферы, соответствующая данным САВ-2. Анализ рассматриваемых данных привел к выводу, что отношения смеси азота, аргона и кислорода в основной толще атмосферы равны 2,4?10-2; 1,5?10-2 и 1,6?10-3, соответственно. Верхняя атмосфера обогащена окисью углерода и азота по сравнению с нижней, где отношения смеси этих компонент составляют около 8?10-4 и 10-8–10- 9.

8. Эволюция атмосферы

 Хотя содержание азота в современной атмосфере Марса составляет около 2,5%, обнаружение того факта, что марсианская атмосфера обогащена тяжелым изотопом азота 15N примерно на 75% по сравнению с земной атмосферой, побудило Макэлроя и др. [74] предположить, что за последние 4,5 млрд. лет Марс потерял значительное количество молекулярного азота в результате диссипации. По-видимому, главным механизмом диссипации являлась продукция быстрых атомов азота реакциями диссоциативной рекомбинации

N+2+e > N+N

и диссипации электронным ударом

e +N2> e+N+N,

причем в обоих случаях продуцируются преимущественно N(4S) и N (2D).

Если принять ионную и электронную температуры марсианской атмосферы равными 400 К, то средняя скорость атомов, продуцируемых первой из упомянутых реакций, составит 4,96 км/с. Скорость, необходимая для диссипации с уровня 210 км (высота экзобазы), равна 4,68 км/с. Учет длительной диссипации атомов азота приводит к выводу, что парциальное давление молекулярного азота в геологическом прошлом должно было составлять не менее нескольких миллибар и могло достигать 30 мбар, если принять во внимание возможность функционирования марсианского грунта как стока для атмосферных HNO2 и HNO3.

Полученная ранее оценка суммарного выделения водяного пара на Марсе за счет дегазации твердой оболочки, найденная по данным о диссипации водорода, который является продуктом фотодиссоциации водяного пара, привела к значению порядка 102 г/см2. Аналогичные вычисления для углекислого газа дали 60±20 г/см2. За последние годы были высказаны предположения, что марсианский реголит и северная полярная шапка могут оказаться гигантскими стоками водяного пара и углекислого газа. Расчеты показывают, что реголит мог адсорбировать до 103 г/см2 водяного пара и может содержать до 400 г/см2 углекислого газа, а в северной полярной шапке может быть «погребено» до 103 г/см2 СО2. Все эти оценки указывают на то, что поверхностные слои твердой оболочки Марса могут содержать больше водяного пара и углекислого газа, чем выделилось в результате дегазации за всю историю планеты [34].

С учетом данных о высоком (28%) содержании аргона в марсианской атмосфере Леови [63] показал, что дегазация водяного пара и углекислого газа на протяжении эволюции Марса была на два порядка величины более интенсивной, чем предполагалось ранее. Если принять относящиеся к Земле значения отношений дегазации для различных компонентов, то оказывается, что на протяжении истории Марса в процессе дегазации выделилось около 105 г/см2 водяного пара (эта величина примерно в 108 раз превосходит современное содержание водяного пара в атмосфере Марса), 104 г/см2 углекислого газа (это в 103 раз превосходит современное содержание) и 450 г/см2 азота.

Возможно, что основная часть азота, выделившегося в процессе дегазации, оказалась затем химически связанной в марсианском реголите. Следует предполагать, что реголит содержит большое количество таких летучих компонент как водяной пар, углекислый газ, водород, нитраты, нитриты или нитриды. Таблица 9 характеризует предполагаемую модель содержания водяного пара и углекислого газа на Марсе, составленную Левиным [63] по данным различных авторов.

На основе анализа состава летучих компонент земной коры, метеоритов, а также состава атмосферы Венеры, Луны и Земли Оуэн [91] получил оценки состава продуктов дегазации твердой оболочки Марса. Обнаружение по данным АМС «Марс-6» большого количества аргона в марсианской атмосфере допускает три вероятных интерпретации. Первая состоит в предположении, что на Марсе имел место такой же уровень дегазации твердой оболочки, что и на Земле. Поэтому возможен один из вариантов сильной дегазации, которому соответствуют большие количества «погребенных» или исчезнувших углекислого газа, водяного пара и азота.

Таблица 9 Предполагаемое содержание водяного пара и углекислого газа на Марсе

Другая интерпретация состоит в том, что на Марсе произошла дегазация, подобная лунной, и за ранней потерей летучих компонентов последовало постепенное высвобождение радиогенных газов. В таком случае общее содержание 40Аr не может служить надежным индикатором общего содержания летучих компонентов, поскольку химически активные газы могли иметь другие происхождение и историю.

Третья интерпретация исходит из некорректности данных «Марса-6» и предположения, что действительное содержание аргона в атмосфере Марса значительно меньше. Все это свидетельствует о крайней неполноте существующих представлений об эволюции марсианской атмосферы и необходимости дальнейших исследований содержания инертных газов. Противоречивые данные АМС «Марс-6» и «Викинг- 1, -2» являются наглядным подтверждением этого вывода.

В связи с проблемой эволюции атмосферы Марса Хюгенин [49] привлек внимание к тому, что происходящая на Марсе окислительная эрозия, которая стимулируется фотодиссоциацией, необратимо удаляет из атмосферы кислород и водород со скоростью от 108 до 1011 молекул/ (см2·с), что соответствует суммарной потере водяного пара от 1025 до 1028 молекул/см2 (102— 105 г/см2), если предполагать неизменность скорости этого процесса в геологическом прошлом. Дополнительное количество Н2О удаляется в результате гидратации Fe2O3 и глинистых минералов, но эти потери обратимы. Углекислый газ необратимо удаляется из атмосферы при образовании СаСО3 со скоростью 107—1010 молекул/ (см2·с), что эквивалентно суммарной потере 1024— 1027 молекул/см2 (10–104 г/см2).

Ранее предполагалось, что основным стоком для летучих компонентов является диссипация через атмосферу, обусловливающая потери всего лишь 102 г/см2 водяного пара и 100 г/см2 углекислого газа за период геологического прошлого планеты. Недавнее обнаружение по данным СА «Марс-6» значительного количества аргона в атмосфере Марса допускает возможность того, что потери водяного пара и углекислого газа могли достичь 105 и 104 г/см2 соответственно. Если количество водяного пара и углекислого газа, удаляемые за счет стимулируемой фотодиссоциацией окислительной эрозии, близки к упомянутым верхним пределам, возможно, что химическая эрозия оказывала главное влияние как фактор, ограничивающий поступление водяного пара и углекислого газа при аккумуляции их реголитом и полярными шапками.

В рамках научной программы АМС «Викинг» предприняты четыре вида измерений, имеющих важное

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату