каналы и он обладает моторными функциями. Он может подключаться к компьютеру при помощи кабеля связи через USB-порт или по радиоканалу Bluetooth. Это подключение как раз и связывает его с нейронной сетью — блоком управления. При этом, как замечает Алексей Пимашкин, «совершенно не важно, где находится нейронная сеть: она может быть в соседнем здании или вообще в другой стране, а сигнал при этом передается по Интернету». Компьютер, к которому подключен робот, не играет абсолютно никакой роли в управлении. Он выполняет лишь функцию передачи и кодирования сигнала от нейронной сети к машинке.
Когда все условия эксперимента выполнены, то есть нейронная сеть сформировалась и готова адекватно воспринимать, обрабатывать и выдавать сигналы, когда назначены входные и выходные электроды на мультиэлектродной матрице, а робот подключен к сети, исследователи приступают к основной части — проверке системы. Тогда и устраивают эксперимент с преодолением препятствий. Датчик-кнопка при столкновении с преградой выдает электрический сигнал, который отражается на экране компьютера. Сигнал идет на входные электроды мультиэлектродной матрицы, и в нейронной сети возникает электрическая активность. Активность одного сигнала длится 500 миллисекунд, ее можно наблюдать на компьютере в виде спайков — электрических импульсов. За это время сигнал обрабатывается, и нейронная сеть выдает уже другой сигнал, который отправляется на выходные электроды. В результате робот получает команду повернуть направо или налево в зависимости от того, какой из его датчиков сработал.
Но как нейронная сеть решает, какой конкретно ответ на внешний сигнал ей выдать? Дело в том, что появление входного сигнала сеть рассматривает как возникновение некоей проблемы, которую нужно решать. Сама по себе она совершенно ничего не знает ни о машинке, ни о препятствии, ни о внешнем мире вообще. Все, что у нее есть, — стимуляция, от которой нужно избавиться. И пока сеть не отдаст нужную команду, стимуляция не исчезнет. Сеть отдает команду лишь потому, что ей нужно что-то сделать, чтобы внешний сигнал пропал. Таково свойство нейронов.
В первый раз в своей жизни столкнувшись с препятствием, нейронная сеть не умеет делать ничего. Она не знает, какой сигнал ей выдать в ответ, и начинает генерировать множество различных реакций. В случайный момент времени одна из реакций оказывается верной, робот сворачивает, и постоянное внешнее возмущение пропадает, потому что кнопка-датчик больше не нажата. Становится хорошо всем: ученым от того, что машинка выполнила разумное действие и увернулась от препятствия, а у нейронной сети исчезло раздражение. Однако это действие является лишь началом жизнедеятельности нейронной сети во внешнем мире. В следующий раз время от начала возмущения до того момента, как сеть даст правильный ответ, сократится, и с каждым разом оно будет сокращаться все сильнее. Нейронная сеть станет отдавать команду на поворот робота практически сразу после его столкновения с препятствием. Этот процесс усвоения нужного решения и хотят исследовать ученые во время экспериментов над нейроаниматом.
Подобное обучение живого мозга исследователи сравнивают с тем, как, например, в поисках еды животное обходит различные места в пространстве, а когда находит, должно запомнить это место, чтобы вернуться туда в следующий раз. Изначально у мозга не было решения проблемы, где найти еду. Он не знал, что делать и куда идти. Затем в результате поиска это решение нашлось и запомнилось. При этом схема работы мозга аналогична тому, что происходит в процессе эксперимента с нейроаниматом.
Исследователи хотят добиться, чтобы искусственно выращенная нейронная сеть смогла так же обучаться и самоорганизовываться, как и живой мозг, а потому работают над моделью, в которой робот будет иметь множество сенсорных входов и много различных возможностей для решений. На него планируется поставить ультразвуковой датчик, чтобы он «видел» препятствия подобно летучей мыши. Что случится тогда? Он сможет поворачивать в разные стороны, ездить с различной скоростью, выполнять другие механические действия, например, нагибаться или делать последовательные движения — не просто сворачивать, а поворачивать налево, потом направо, потом еще раз налево, обходить препятствие. «От обычного робота его станет отличать то, что все решения будет принимать не программируемый компьютер с заранее заложенными решениями, а адаптивный навигатор — живой мозг, находящий и запоминающий новые решения», — объясняет Виктор Казанцев.
Однако возникает вопрос — зачем все это нужно?
Исследователи не скрывают — чтобы заглянуть в глубины мозга: изучить при помощи микроскопов и других исследовательских приборов, что, собственно, происходит внутри нейронной сети в процессе обработки информации и обучения. Далее, когда они получат схему работы сети, которая самоорганизовалась и научилась что-то делать, можно будет создать математическую модель, которую, в свою очередь, зашить в микрочип. Он станет самоорганизующейся системой обработки информации, своего рода искусственным интеллектом. Ни больше ни меньше.
Разумная электроника
Применение такой системе ученые видят во всех областях, где требуется электроника, выполняющая сложные функции. Хитрые чипы пригодятся в военной и космической отраслях, в управлении сложными производствами, заводами, конвейерами и в медицине. Например, луноход или марсоход попадут в условия, на которые не были запрограммированы, — окажутся в глубокой яме. Если обычный запрограммированный аппарат так и останется в этой яме навсегда, то «умный» луноход поймет, что ему нужно, например, раскатываться взад-вперед, а потом сам выпрыгнет из ямы враскачку. «Самое главное, что машина сможет решить неожиданно возникшую проблему, на которую не была запрограммирована, по тому же принципу, как действует мозг животных и людей», — продолжает Виктор Казанцев. Кроме того, понимание принципов, как происходят поиск и обучение новым функциям в мозге, позволит раздвинуть рамки медицины. Появится новый подход к лечению болезней и отклонений, связанных с обучением и памятью. Возможно даже будет улучшать память и адаптацию к новым функциям в мозге.
И, конечно, нас ожидает небывалый прорыв в компьютерной области. Нейрокомпьютер в отличие от простого программируемого устройства сможет решать множество проблем одновременно, потому что в мозге происходят параллельные вычисления, а в электронике все вычисления делаются хоть и с огромной скоростью, но последовательно. «Если построить такие модели процессоров, они будут делать вычисления в десятки, в сотни тысяч раз быстрее, чем современные компьютеры», — уверен Пимашкин.
Вполне возможно, что для достижения своей цели ученым придется не раз модернизировать нейроанимата. Например, создать систему, в которой будет задействована не одна нейронная сеть, а несколько, причем состоящих из нейронов, взятых из разных отделов мозга. Может быть, предстоит пересмотреть архитектуру сети, сделав ее трехмерной, увеличив количество электродов. Но это вопрос техники. Главная же задача на