глубина( ДвДерево, Глубина)
вычисляющую глубину двоичного дерева в предположении, что глубина пустого дерева равна 0, а глубина одноэлементного дерева равна 1.
Посмотреть ответ
9. 11. Определите отношение
линеаризация( Дерево, Список)
соответствующее 'выстраиванию' всех вершин дерева в список.
Посмотреть ответ
9. 12. Определите отношение
максэлемент( Д, Элемент)
таким образом, чтобы переменная Элемент приняла значение наибольшего из элементов, хранящихся в дереве Д.
Посмотреть ответ
9. 13. Внесите изменения в процедуру
внутри( Элемент, ДвСправочник)
добавив в нее третий аргумент Путь таким образом, чтобы можно было бы получить путь между корнем справочника и указанным элементом.
Посмотреть ответ
Назад | Содержание | Вперёд
Назад | Содержание | Вперёд
9. 3. Двоичные справочники: добавление и удаление элемента
Если мы имеем дело с динамически изменяемым множеством элементов данных, то нам может понадобиться внести в него новый элемент или удалить из него один из старых. В связи с этим набор основных операций, выполняемых над множеством S, таков:
внутри( X, S) % Х содержится в S
добавить( S, X, S1) % Добавить Х к S, результат - S1
удалить( S, X, S1) % Удалить Х из S, результат - S1
Рис. 9. 9. Введение в двоичный справочник нового элемента на уровне листьев. Показанные деревья соответствуют следующей последовательности вставок:
добавить( Д1, 6, Д2), добавить( Д2, 6, Д3), добавить( Д3, 6, Д4)
доблист( nil, X, дер( nil, X, nil) ).
доблист( дер( Лев, Х, Прав), Х, дер( Лев, Х, Прав) ).
доблист( дер( Лев, Кор, Прав), Х, дер( Лев1, Кор, Прав)) :-
больше( Кор, X),
доблист( Лев, X, Лев1)).
доблист( дер( Лев, Кор, Прав), Х, дер( Лев, Кор, Прав1)) :-
больше( X, Кор),
доблист( Прав, X, Прав1).