расширспис( Деревья, Предел, Деревья1, ЕстьРеш)

аналогична процедуре расширить. Так же, как и в процедуре расширить, Предел задает ограничение на рост дерева, а ЕстьРеш - это индикатор, указывающий, каков результат расширения ('да', 'нет' или 'никогда'). Первый аргумент - это, на этот раз, список деревьев (И-список или ИЛИ-список):

        Деревья = или:[Д1, Д2, ...] или

        Деревья = и : [Д1, Д2, ...]

Процедура расширспис выбирает из списка Деревья наиболее перспективное дерево (исходя из F-оценок). Так как деревья в списке упорядочены, таким деревом является первый элемент списка. Наиболее перспективное дерево подвергается расширению с новым ограничением Предел1. Значение Предел1 зависит от Предел, а также от других деревьев списка. Если Деревья - это ИЛИ-список, то Предел1 устанавливается как наименьшая из двух величин: Предел и F-оценка следующего по 'качеству' дерева из списка Деревья. Если Деревья - это И-дерево, то Предел1 устанавливается равным Предел минус сумма F-оценок всех остальных деревьев из списка. Значение переменной Деревья1 зависит от случая, задаваемого индикатором ЕстьРеш. Если ЕстьРеш = нет, то Деревья1 - это то же самое, что и список Деревья, причем наиболее перспективное дерево расширено с учетом ограничения Предел1. Если ЕстьРеш = да, то Деревья1 - это решение для всего списка Деревья (найденное без выхода за границы значения Предел). Если ЕстьРеш = никогда, то переменная Деревья1 неинициализирована.

Процедура продолжить, вызываемая после расширения списка деревьев, решает, что делать дальше, в зависимости от результата срабатывания процедуры расширить. Эта процедура либо строит решающее дерево, либо уточняет дерево поиска и продолжает процесс его наращивания, либо выдает сообщение 'никогда' в случае, когда было обнаружено, что список деревьев не содержит решения.

/* ПРОГРАММА И / ИЛИ-ПОИСКА С ПРЕДПОЧТЕНИЕМ

Эта программа порождает только одно решение. Гарантируется, что это решение самое дешевое при условии, что используемая эвристическая функция является нижней гранью реальной стоимости решающих деревьев.

Дерево поиска имеет одну из следующих форм:

дер( Верш, F, С, Поддеревья)                     дерево-кандидат

лист( Верш, F, C)                                           лист дерева поиска

решдер( Верш, F, Поддеревья)                  решающее дерево

решлист( Верш, F)                                        лист решающего дерева

С - стоимость дуги, ведущей в Верш

F = С + Н, где Н - эвристическая оценка оптимального решающего дерева с корнем Верш

Список Поддеревья упорядочен таким образом, что

(1)        решающие поддеревья находятся в конце списка;

(2)        остальные поддеревья расположены в порядке возрастания F-оценок

*/

        :- ор( 500, xfx, :).

        :- ор( 600, xfx, --->).

        и_или( Верш, РешДер) :-

                расширить( лист( Верш, 0, 0), 9999, РешДер, да).

                                       

Вы читаете Prolog
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату