accomplish there. She also had absolutely no inhibitions about sharing her strongly held opinions.

“We’ve been through this all before, people,” said Morton, quickly losing patience with the continuous disagreement among his team about where the Altair should land and where people should again walk on the surface of the Moon. Morton showed his visible frustration by entering what many had come to call his “lecture mode.” To an outside observer, his demeanor would have appeared astonishingly similar to that of a parent lecturing a recalcitrant teenager about the dangers of having unprotected sex.

“We know we have to be near the equator. We know we want to be near one of the Apollo sites because we want to bring back a piece of hardware to assess how being on the Moon affected it. And Apollo 11 is out of the question. It will be a historical landmark, and we aren’t to mess with it in any way.” Morton broke out of the lecture mode to ask a real question. “Saul, other than the picture, what’s the benefit of going back to Taurus-Littrow and Apollo 17?”

Morton considered Britenstein to be brilliant. In fact, the twentysomething scientist from the University of Arizona was on Morton’s short list of future recruits for the Lunar and Planetary Institute. Britenstein was tall, frighteningly thin, and certainly not among the most attractive half of the human species. Morton more than once wondered how such a brilliant and obviously awkward young man had managed to marry the quite attractive medical student that was his wife. But Morton didn’t want to be distracted by that thought at the moment.

“Well,” began Britenstein, “it was from this area that Schmitt found the rocks that gave us the best history of the Moon to date. I think there is more to be gained from going back here and collecting more samples for comparison. I’ve shown you the data, and most of the selenologists agree. If you want to better understand the formation of the Moon, this is the place to start. Or, restart, as it were.” It was not Britenstein’s most eloquent response, but they had all seen his data before. There was no need to repeat it to this group.

Morton, still peering through his 3-D goggles, was looking closely at one of the few lower-resolution images on the Moon mural. Though the Lunar Mapper had been in orbit about a year, there were still a few areas on the Moon that had escaped multidirectional imaging. Some of the gaps were caused by one-of-a-kind mission anomalies; others were caused by the vagaries of the Moon’s orbital rotation rate and the slow evolution of the spacecraft’s orbit around it. The portion of the image at which Morton was staring was one of those low-resolution areas that would soon be corrected with an upcoming flyover of the spacecraft.

“Look at this,” said Morton. His tone was inquisitive, and this drew more of a response from his teammates than his frequent, though never really negative, wry comments and complaints.

“It almost looks like there is another lander here. See the odd shape of this rock? The reflectance data I just pulled up doesn’t match a natural rock formation. It looks more like the remains of a spacecraft. But the image is simply too poor to make it out. I looked in the catalog, and there are no known missions that landed near here, neither Soviet nor American. And if the Europeans or Japanese had done it in the last several years, then we would know about it. Very odd.”

“Hmm,” Upchurch responded, “do you think we’ve found a crashed flying saucer or something? Hardly likely. More likely another ‘Face on Mars’ that will go away when we get the better imagery. I’d recommend you forget about it for now.”

“Probably not aliens, you think?” Britenstein laughed. “If the data rate were higher, we could watch the Altair land on the surface almost as soon as it actually happens. The cameras on this bird might even be able to resolve Stetson as he takes his first walk across the surface. Now that would be cool.”

“Mariam, you’re right. With only low-resolution data, we cannot recommend the site for a landing anyway. Too risky…Too bad,” Morton added. “Now, back to the task at hand. We have two excellent choices that meet all mission criteria. Which shall it be?”

The debate resumed, and the remains of China’s failed attempt to land a robot on the Moon remained undiscovered.

Meanwhile, some 240,000 miles away in lunar orbit, the Lunar Mapper spacecraft was following its slowly repeating trajectory around the Moon. Its camera was working flawlessly after nearly a year on the job. If someone had been there looking around, they might have noticed a glint on the horizon, occasionally captured by the spacecraft’s primary camera. The camera was pointed toward the lunar surface, and not out into deep space. The glint was photographed a few more times over the next several minutes as the images were sent back to the Earth in nearly real-time by the spacecraft’s onboard telemetry system. Data analysis was not conducted in real time, so there was no one looking when the small projectile collided with the Lunar Mapper spacecraft at a relative velocity of four kilometers per second. While the projectile was traveling at less than half the velocity of a spacecraft in low Earth orbit, it was moving eight times faster than a bullet, packing sixty-four times the destructive energy. The collision obliterated the little mapping spacecraft.

Only after the data stopped did anyone look at the last few images sent back to the Earth from lunar orbit; it was then that the “glint” was observed and the idea put forward that the Lunar Mapper was victim to either a piece of space junk or an errant meteorite. Both were incredibly unlikely events, but the reality was something so unlikely that no one even considered it.

The Lunar Mapper spacecraft, set to continue taking high-resolution images of the Moon for at least another half a year, was the victim of a piece of depleted uranium deliberately sent to collide with it. The uranium projectile that impacted the spacecraft had been launched several days before from China. The launch was hailed by China as a lunar flyby mission that would use the Moon to slingshot the spacecraft toward the sun for future solar-weather observations. But unbeknownst to the rest of the world, the real goal of the mission was stopping all high-resolution mapping of the Moon for at least the next two years. Building upon their demonstrated capability to destroy a satellite in Earth orbit, which they did in 2007, China had quietly developed a capability to intercept and destroy any spacecraft in the Earth-Moon system. Lunar Mapper was the first target; no one in China asserted responsibility for the attack or even acknowledged that an attack had taken place. And though analysts in the National Reconnaissance Office later suggested in appropriately classified memoranda that China was responsible, no one at NASA had a clue.

Chapter 13

Calvin Ross was alone in his top-floor office at NASA headquarters in Washington, D.C., when he received a text message from his friend and former Senate colleague, the Honorable Karen Anderson of Texas. It was just 7:30 a.m. and most NASA workers were still in the middle of their morning commutes. Ross had arrived in the District early and worked out at his favorite gym just down the street. He was in top physical and mental condition, working out each and every morning for at least forty-five minutes before reporting to work.

First running his hands through his full, though now graying, hair, Ross picked up his BlackBerry from between the picture of his wife (whom some called a trophy wife because she was fifteen years his junior and looked great in a tennis outfit) and the digital frame scrolling through twenty years of family pictures.

The message was blunt: newsome to request nasa cut to pay for education budget increase. first moon flight

Вы читаете Back to the Moon-ARC
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату