The decision to continue the mission or not would have to be made within hours or the liquid-hydrogen supply would boil away uselessly into space. That would give the ground-support team at least a few days to troubleshoot the automated rendezvous and docking system, and its computer and software, to find the source of the problem and hopefully fix it. At least, that’s the logic Stetson was using when he made the decision that only he could make.
“All right, everyone, we’re go for Lunar Orbit Insertion unless and until I say otherwise. We’ll get this problem fixed and patched before it’s needed again. Let’s stay the course.” In his unflappable way, which was one of the reasons he had been selected to be the commander of the first human lunar return flight, Stetson both committed the mission to the next phase and reassured all in the room of the can-do attitude that was so crucial to past mission successes, had been missing at NASA for decades, and, while on his watch, was absolutely crucial to the current mission—his mission. Bill was going to go to the Moon or bust.
Chapter 2
The cause of the rendezvous and docking failure was still unknown, but virtually every member of the team that developed the system and its flight computer were called in to begin working on understanding the failure and figuring out how to fix it. Rocket scientists and engineers in Houston, Texas, and Huntsville, Alabama, found out that they wouldn’t be going home on time. A flurry of cell-phone calls, e-mails, and text messages to spouses or significant others went out explaining that they wouldn’t be home for dinner. Take-out pizza would be the most common meal of the day.
Thirty-six hours later, the command was given for Lunar Orbit Insertion. In typical NASA fashion, the media were told that all systems were “nominal,” thereby guaranteeing that the viewing public would be put to sleep by the whole event. To those engineers engaged in making it happen, however, “nominal” would not be the word that first came to mind. It certainly wouldn’t be the story they told their families and friends later in the week.
Upon receiving the command, the EDS fired up its single J-2X cryogenic engine, which began to burn two hundred twenty thousand pounds of hydrogen and oxygen, accelerating the hundred-ton Earth Departure Stage to greater than the twenty-thousand-miles-per-hour velocity required to escape the pull of Earth’s gravity.
If not for the incredibly cold liquid-hydrogen fuel circulating through the pipes wrapping the outside of the J-2X engine, the hellish six-thousand-degree heat produced by the burning of the hydrogen and oxygen in the combustion chamber would have almost immediately melted the nozzle. The fuel circulated through pumps and around the exterior of the rocket-engine nozzle and then back into the engine, where combustion would take place. The hydrogen and oxygen burned together and forced superheated and pressurized gasses out through the throat of the nozzle to its exit and then into space with a pure bright orange and white fiery glow.
The J-2 engine originally flew on the second stage of the venerable Saturn V rockets that carried the Apollo astronauts to the Moon. The J-2X was an upgraded version for the new generation of Moon rockets, and it was designed to complete its job in just less than seven minutes of burn time.
Throughout this acceleration, the Orion continued to perform what was known as the barbeque roll, so-called because it resembled the process of slow-cooking a pig on a spit over an open fire, slowly turning the pig so as to not overcook one side from the intense heat of the flame. The Orion performed this slow roll for the same reason— so as to not cook the ship by having one side of the vehicle continuously exposed to sunlight and therefore becoming a barbeque in space. After all, nobody likes their rocket overcooked on one side and raw on the other, especially not the astronauts inside it.
In addition, the delicate solar arrays that would power many of the onboard functions, previously unfurled like origami, were rotated so they would continuously point toward the sun. The solar panels were crucial in maintaining the electrical power required to keep the Orion’s systems functioning.
All of these pointing-and-control maneuvers were controlled by onboard computers. And all of the onboard computers that performed this function had within them a board manufactured by Alcoa Electric Corporation. This same board was used to control the automated rendezvous and docking maneuver between the Orion and the EDS.
“Bill, I think we’ve got one of the problems figured out.” Stetson, without having to look up from what he was doing, recognized the voice at the door as that of the chief engineer for the rendezvous and docking system. It had been almost two days since the nail-biting Earth-orbit rendezvous of the Orion with the Earth Departure Stage, and no one was really expecting the engineers to figure out the cause of the problem so quickly. Not that Bill Stetson would appear to be surprised by anything.
“Come in.” Stetson looked up from his desk and motioned for the seasoned but ever-eager Rick Carlton to take a seat at the small conference table across the room. Bill rose from his chair and strode to the table, the alpha male in the room by the way he carried himself and his purposeful stride to the chair adjacent to the one Carlton had just occupied. “What have you got?” he asked.
Carlton, no lightweight by anyone’s standards, was intimidated by the astronaut’s presence. Bill could tell, but then he hoped the man would get over it because Bill didn’t go through life trying to intimidate people. It wasn’t his style. He wasn’t trying to be intimidating—he just was. Asking him not to take control over just about any situation in which he found himself would be like asking the sun not to shine. Bill was just one of those people who demanded attention and he usually got it.
“Uh,” Carlton began his explanation, nervously shuffling the papers he’d brought in with him, “the glitch appears to be in the flight-computer software. You know the software was the tall pole leading up to this flight, and I am surprised the IV&V didn’t catch it long before now.” The NASA Independent Verification and Validation team had the task of approving all flight software. The team’s job was to be another set of eyes to review all the software, line by line, just to make sure it was correct and that there wouldn’t be any major flight-system failure from faulty computer code.
“Really?”
“Yeah. The computer is supposed to take all the sensor data from the Orion and route it to the systems that need the information to function. It’s supposed to take data from the laser ranging, the GPS, the sun sensors, and just about every other sensor on the vehicle and make sense of it. Sort it and then funnel it out to the elements that need it next. In our case, however, that didn’t happen.” Carlton paused, and Bill could tell that the pause was not only to take a breath, but also for effect.
“Why not?” asked Bill, looking at Carlton expectantly but not impatiently.
“Well,” Carlton began again, “the software got to the computer all right, but the code added the position-error function to the data twice, making its actual position appear to be incorrect, thus causing the ship’s thrusters to overcompensate in an attempt to get it where it was supposed to be—which it already was, at least the first time. Since it didn’t know where it really was, it appeared to be where it was at an earlier time. The thrusters fired to move it to where it was supposed to be, and then the lag happened again. The ship appeared to have not moved or moved only slightly. The thrusters then fired again, making the Orion move faster than it was supposed to in an effort to get to where it thought it should be when, in fact, it was already there.” He began to wonder if his wordy