для которого неопределенность связана с возможностью выбора той или иной потребительской корзины (естественная потребительская корзина для данного региона или инвестиционного проекта может отличаться от таковой для экономики в целом и для товаров народного потребления в частности, поскольку завод потребляет иные виды материальных ценностей, чем человек), тех или иных цен в реально имеющемся диапазоне, а также зависит от степени заинтересованности организации, рассчитывающей индекс. Так, индекс Госкомстата (при отсчета от марта 1991 г.) в два с лишним раза меньше индекса независимых исследователей, в частности, рассчитанного по нашей методике. Причины коренятся в печальной истории статистики в нашей стране. Коротко говоря, одна группа причин связана с желанием угодить заказчикам (высшим государственным органам), другая - с профессиональной некомпетентностью. Подробнее 'история с инфляцией' изложена в монографии [6].
Подведем итоги. Дисконт-функцию можно разложить на две составляющие общую для экономики в целом и специфическую для данной отрасли или данного инвестиционного проекта. Если дисконт-функция - константа для разных отраслей, товаров и проектов, то эта константа называется дисконт-фактором, или просто дисконтом..
Общая дисконт-функция определяется совместным действием реальной процентной ставки и индекса инфляции. Реальная процентная ставка описывает 'нормальный' рост экономики (т.е. без учета инфляции). В стабильной ситуации (при 'долговременном конкурентном равновесии'), как известно из экономической теории, доходность от вложения средств в различные отрасли, в частности, в банковские депозиты, должна быть одинакова. В современных условиях эта величина (норма рентабельности) равна примерно 6-12% (см., например, [7]). Примем для определенности максимальное значение, равное 12%. Другими словами, 1 рубль через год превращается в 1,12 руб., а потому 1 рубль через год соответствует 1/1,12 = 0,89 руб. сейчас - это и есть максимально возможное значение дисконта.
Обозначим дисконт буквой С. Как установлено выше, С - число между 0 и 1, точнее, максимально возможное значение дисконта равно 0,89. В общем случае, если q - банковский процент (плата за депозит), т.е. вложив в начале года в банк 1 руб., в конце года получим (1+ q) руб., то дисконт определяется по формуле
С = 1 / (1+ q) (1).
Отметим, что при таком подходе полагают, что банковские проценты платы за депозит одинаковы во всех банках. Более правильно было бы считать q, а потому и С, нечисловыми величинами, а именно, интервалами [q1 , q2] и [С1 , С2] соответственно. При этом связь между интервалами определяется формулой (1):
С1 = 1 / (1+ q2) , С2 = 1 / (1+ q1) .
Следовательно, выводы, полученные с помощью рассматриваемых величин, должны быть исследованы на устойчивость (в инженерной среде принят термин 'чувствительность') по отношению к отклонениям этих величин в пределах заданных интервалов.
Обозначим дисконт-функцию C(t) как функцию времени t. Тогда при постоянстве дисконт-фактора во времени дисконт-фунция имеет вид
C(t) = С^t, (2)
т.е. С возводится в степень t. Согласно формуле (2) через 2 года 1 руб. превращается в 1,12 х 1,12 = 1,2544, через 3 - в 1,4049, следовательно, 1 руб., полученный через 2 года, соответствует 79,72 копейки сейчас, а 1 руб., обещанный через 3 года, соответствует 0,71 руб. сейчас. Другими словами, С(2) = 0.80 (с точностью до двух знаков после запятой), а С(3) = 0,71.
Если дисконт-фактор меняется год от году, в первый год равен С1, во второй год - С2 , в третий год - С3 ,..., в t - ый год - Сt , то в этом общем случае дисконт-функция имеет вид
C(t) = С1 С2 С3 ... Сt . (3)
Пусть, например, С1 = 0,8, С2 = 0.7, С3 =.0.6, тогда согласно формуле (3) имеем C(t) = 0,8 х 0,7 х 0.6 = 0,336. Если С1 = С2 = С3 =... = Сt , то формула (3) переходит в формулу (2).
Индекс инфляции А (в разах, а не в процентах) за год дает дисконт 1/ (1,12А), т.е. 1 руб. сейчас соответствует 1,12А руб. через год. Долговременная динамика индекса инфляции плохо предсказуема.
Частная дисконт-функция зависит от динамики цен и темпов технологического обновления (физического износа, морального износа, научно-технического прогресса) в отрасли. Так, вложения в компьютеры обесцениваются гораздо быстрее, чем вложения в недвижимость (здания, землю) - для покупки недвижимости, которая сейчас стоит 1 руб., через год может понадобиться 1,12А руб., а для покупки компьютера, который сейчас стоит 1 руб., может понадобиться через год лишь 0,8 руб. (в ценах, которые будут через год). Не будем касаться здесь достаточно сложных проблем оценки социальных, технологических, экономических и технологических факторов (короче, СТЭП-факторов), связанных с вложениями, например, в развитие образовательных учреждений, и подходов к налогообложению таких учреждений.
4. Характеристики потоков платежей
Как уже говорилось, инвестиционные проекты, результаты применения управляющих воздействий к процессам налогообложения и другие экономические реалии описываются потоками платежей и поступлений, т.е. функциями (временными рядами), а сравнивать функции естественно с помощью тех или иных характеристик. Рассмотрим несколько характеристик потоков платежей и поступлений.
4.1. Различные способы расчета срока окупаемости
Срок окупаемости - тот срок, за который доходы покроют расходы. Предполагается, что после этого проект (инвестиционный проект, или проект изменения налоговой системы, в частности, ставок налогов, или же какой-либо иной) приносит только прибыль. Очевидно, это верно не для всех проектов. Потому понятие 'срок окупаемости' применяют к тем проектам, в которых за единовременным вложением средств следует ежегодное получение прибыли.
Простейший (и наименее обоснованный) способ расчета срока окупаемости состоит в делении объема вложений А на ожидаемый ежегодный доход В. Тогда срок окупаемости равен А/В. Пусть, например, А - это разовое уменьшение налоговых сборов в результате снижения ставок, а В - ожидаемый ежегодный прирост поступлений в бюджет, обеспеченный расширением налоговой базы в результате ускоренного развития производства.
Этот способ не учитывает дисконтирование. К чему приведет введение в расчет дисконт-фактора? Пусть, как и ранее, объем единовременных вложений равен А, причем начиная с конца первого года проект дает доход В ежегодно (точнее, доход поступает порциями, равными В, с момента, наступающего через год после вложения, и далее с интервалом в год). Если дисконт-фактор равен С, то максимально возможный суммарный доход равен
ВС + ВС2 + ВС3 + ВС4 + ВС5 + ... = ВС ( 1 + С + С2 + С3 + С4 + ... )
В скобках стоит сумма бесконечной геометрической прогрессии, равная, как известно, величине 1/ (1-С). Следовательно, максимально возможный суммарный доход от первого года после вложения до скончания мира равен ВС/(1-С).
Отсюда следует, что если А/В меньше С/(1-С), то можно указать (рассчитать) срок окупаемости проекта, но он будет существенно больше, чем А/В. Если же А/В больше или равно С/(1-С), то проект не окупится никогда. Поскольку максимально возможное значение С равно 0,89, то проект не окупится никогда, если А/В не меньше 0,89/ 0,11 = 8,09.
Пусть вложения равны 1 миллиону рублей, ежегодная прибыль составляет 500 тысяч, т.е. А/В = 2. Пусть дисконт-фактор С = 0.8. Каков срок окупаемости? При примитивном подходе (соответствующем С = 1) он равен 2 годам. А на самом деле?
За k лет будет возвращено
ВС ( 1 + С + С2 + С3 + С4 + ...+ Сk )= ВС ( 1 - Сk+1) / (1 -С) ,
согласно формуле для суммы конечной геометрической прогрессии. Для срока окупаемости получаем уравнение
1 =0,5 х 0,8 ( 1 - 0,8 k+1) / (1- 0,8), (4)
откуда 0,5 = ( 1 - 0,8 k+1), или 0,8 k+1 = 0,5. Прологарифмируем обе части последнего уравнения: (k+1) ln 0,8 = ln 0,5 , откуда
(k +1) = ln 0,5 / ln 0,8 = (- 0,693) / ( - 0,223) = 3,11, k = 2,11.
Срок окупаемости оказался в данном примере равном 2,11 лет, т.е. увеличился примерно на 4 недели. Это немного. Однако если В = 0,2, то вместо (3) мы имели бы
1 =0,2 х 0,8 ( 1 - 0,8 k+1) / (1- 0,8),
Это уравнение не имеет решения, поскольку А / В = 5 > С/(1-С) = 0.8 / (10,8) =4, проект не окупится никогда. Окупаемости можно ожидать лишь в случае А/В < 4. Рассмотрим и промежуточный случай, В = 0,33, с 'примитивным' сроком окупаемости 3 года. Тогда вместо (4) имеем уравнение
1 =0,33 х 0,8 ( 1 - 0,8 k+1) / (1- 0,8), (5)
откуда 0,76 = ( 1 - 0,8 k+1), или 0,8 k+1 = 0,24. Прологарифмируем обе части последнего уравнения: (k+1) ln 0,8 = ln 0,24 , откуда
(k+1) = ln 0,24 / ln 0,8 = (- 1.427) / ( - 0,223) = 6,40, k = 5,40.
Итак, реальный срок окупаемости - не три года, а согласно уравнению (5) чуть менее пяти с половиной лет.
Если вложения делаются не единовременно или доходы поступают по иной схеме, то расчеты усложняются, но суть дела остается той же.
Таким образом, срок окупаемости зависит от неизвестного дисконт-фактора С или даже от неизвестной дисконт-функции - ибо какие у нас основания считать будущую дисконт-функцию постоянной? Иногда (даже в официальных изданиях [8] !) рекомендуется использовать норму дисконта (дисконт-фактор), соответствующую ПРИЕМЛЕМОЙ для инвестора норме дохода на капитал. Мы не знаем, какую норму дисконта тот или иной инвестор сочтет приемлемой. Однако ясно, что она зависит от ситуации в экономике в целом. То, что представляется выгодным сегодня, может оказаться невыгодным завтра, или наоборот. Тем самым решение перекладывается на инвестора, который выступает в роли эксперта по выбору нормы дисконта.
4.2. Чистый приведенный доход (прибыль)
Не всегда инвестиции сводятся к одномоментному вложению капитала, а возврат происходит