college students, especially in the 1960s when intellectual rebellion was fashionable.

The situation became so bad, as far as “establishment” scientists went, that the American Association for the Advancement of Science sponsored a semipublic debate in 1974 between Velikovsky and his detractors in an attempt to discredit the book once and for all. One of the leading scientists in the debate was Carl Sagan, who by then was something of a media darling, a professional skeptic, and well-known by the general public.

I did not attend this debate, as I was only nine years old at the time. However, I have read many accounts of this infamous meeting on the web and in books. Which side won, Velikovsky’s rebels or mainstream science? In my opinion, neither. I’d say they both lost. Velikovsky made several rambling speeches that neither supported nor detracted from his cause, and his supporters came across more as religious zealots than anything else. On the side of science, there was much posturing and posing. Sagan — for whom I have tremendous respect both as a scientist and as someone who popularized teaching astronomy to the public — did a terrible job debunking Velikovsky’s ideas. He made straw-man arguments, and attacked only small details of Velikovsky’s claims.

The book Scientists Confront Velikovsky [Cornell University Press, 1977] transcribes the talks given by scientists at the meeting. As it happens, Velikovsky’s talk is not in the book. Sagan was given an extra 50 percent more space to rebut Velikovsky’s arguments using arguments not in Sagan’s original paper, but Velikovsky was not given any room to counter Sagan’s rebuttals. Because of this word-length dispute, Velikovsky withdrew his paper from the book.

In the book, Sagan gives his arguments against Velikovsky and expands upon them even further in his own (otherwise excellent) book, Broca’s Brain. Again, Sagan’s arguments are not all that great. For example, he gives the energy criteria necessary for Jupiter to eject Venus but then ignores Jupiter’s own rotation, which is crucial for the analysis. On his web site about the affair, fellow scientist and author Jerry Pournelle calls Sagan’s performance “shameful.” Sagan’s and Shapley’s reactions were not uncommon in any way among scientists. Many of them loathed the very idea of Velikovsky writing this book and the fact that he was getting rich from it too. But the extreme amount of bile and bitterness only helped make Velikovsky a martyr. To this day he is practically revered by his followers.

Thomas Jefferson once wrote, “I know no safe depositary [sic] of the ultimate powers of the society but the people themselves; and if we think them not enlightened enough to exercise their control with a wholesome discretion, the remedy is not to take it from them, but to inform their discretion by education.” Perhaps, if Shapley and his fellow scientists had heeded Jefferson, Worlds in Collision would be just another silly pseudoscientific book collecting dust next to ones about UFO aliens curing pimples using homeopathic crystals. Instead, even after half a century, it can be found on bookshelves today.

There’s an ironic footnote to this episode in the history of science. Certainly, scientists of the day dismissed Velikovsky because his assertions clearly flew in the face of everything known about physics and astronomy, then and still today. They also ridiculed him because, at the time, it was thought that the planets were fairly static. Things didn’t change much. Any change that occurred was gradual, slow, glacial. Nothing happened suddenly. This type of thinking is called uniformitarianism.

However, this tide was turning. As observations of the planets improved, including our own, we started to learn that things didn’t always happen at a stately rate. The Moon is covered with craters; it was once thought that these were volcanic, but around the same time as Worlds in Collision was published, scientists were starting to speculate that at least some lunar craters were formed from meteor impacts. Venus’ surface bears evidence that some massive event resurfaced the whole planet some hundreds of millions of years ago, and it looks like there have been many mass extinctions caused by individual catastrophic events here on Earth.

Today we understand that both uniformitarianism and catastrophism describe the history of our solar system. Things mostly go along slowly, then are suddenly punctuated by rapid events.

Velikovsky supporters claim that he was simply ahead of his time, and his theories of catastrophism were denied their due. This is silly; just because he used the idea that catastrophes happened doesn’t mean that any of the things he described were right. But it is rather funny that scientists of the day were wrong in many of their assertions of uniformitarianism as well.

Still, that’s the difference between science and pseudoscience: scientists learn from their mistakes and abandon theories that don’t pan out. Velikovsky was wrong, as were the scientists at the time. But science — real science — has moved on. Maybe we can all learn something from this.

19.

In the Beginning: Creationism and Astronomy

There is a story, almost certainly apocryphal, about a scientist who was giving a public lecture on astronomy. He was describing the scale of the universe, starting with the Earth orbiting the Sun and working his way up to galaxies orbiting other galaxies, and eventually the structure of the universe as a whole. When he was done, an old lady stood up and challenged him.

“Everything you just said is wrong,” she claimed. “The Earth is flat, and sits on the back of a giant turtle.”

The astronomer knew immediately how to retort to that statement: “But then, dear lady, on what is that turtle standing?”

She didn’t bat an eye. “You’re clever, sir, very clever,” she said. “But it’s turtles all the way down!”

I’ve always liked that story. Most people think it’s about a silly old woman who doesn’t understand anything at all about science. But I wonder. It’s not too hard to play a little role reversal. After all, is her answer any more silly than saying that the universe started out as quantum fluctuation that caused the violent expansion of space- time itself?

Okay, yes, it is sillier. But the scientific explanation of the universe, although steeped in observation and tempered through the scientific method, may sound pretty silly to someone not well versed in the subject. The philosopher Pierre Charron said, “The true science and the true study of man is man.” But in a very real sense, man is a part of the universe. I think, after 400 years, we can update Charron’s statement: The true science and the true study of man is the universe.

We’ve been asking basic questions about our existence for a long time. Why are we here? Does the universe have meaning? What is our place in it? How did it all begin? These are questions of the most fundamental nature that everyone asks at some time. People turn to all manner of oracles for answers — religion, science, friends, recreational drugs, even television, although TV usually raises more questions that it answers.

That last question is the real poser. How did the universe begin? Everything in our lives has a beginning and an end. Stories start, build, reach a climax, then finish. Pictures have borders, symphonies have first and last movements, vacations have a starting and stopping point. Of course, our lives themselves are framed by birth and death. We experience everything one second at a time, an orderly flow from early to middle to late. We expect the universe to reflect our conditioning, that it had a beginning and that it, too, will eventually end.

Of all the philosophical questions, this one may actually have some scientific meaning. The clues to the beginning are there, if we can decode them. The universe is like a giant book, and if we are smart enough, we can turn the pages and read it.

To push this analogy just a little further, the next question might be, “In what language is the universe written?” This question is at the heart of a lot of debate. It may not surprise you that I think the universe follows a set of rules — physical and natural rules. These rules are complex, they are not clear, and it is beyond doubt that we do not understand all of them, or have even imagined what they could be. Some are simpler, like the behavior of gravity. Others are complex beyond our mind’s capability, like how matter can disappear down a black hole, or just why an electron has a negative charge. But no matter how simple or how complex, the language of the universe is physics and math. We learn this language better as we observe phenomena around us.

Some people, though, do not think this way. They presuppose a set of rules and try to get their observations to match what they want to believe. This isn’t a great way to try to figure out the

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×