содержащей 352 г плутония.

Поскольку велся ремонт коммуникаций для передачи жидкостей, первоначально в реактор N 2 была подана только азотная кислота. Спустя несколько часов была добавлена вода, что является технологическим нарушением: по правилам, вода должна подаваться первой. Кроме того, количества этих жидкостей не соответствовали регламенту. По прошествии нескольких часов растворения было определено, что раствор имеет повышенную кислотность. Последующее смешивание привело к тому, что раствор, как показали измерения, стал слегка щелочным. После отстоя раствор передали в сборник.

Нет подтверждающих записей, но вероятнее всего, во время длительного процесса растворения в реактор N 2 была добавлена дополнительная порция шлаков от металлургических операций для нейтрализации раствора. Затем были выполнены еще две последовательные операции растворения. После первой операции раствор был еще кислотным. Во время второй операции был добавлен аммиачный раствор, в результате этого раствор стал нейтральным. Процесс был завершен выключением мешалки и нагрева реактора. Вскоре после этого (~через 10 мин, в 00 ч 15 мин) сработала аварийная сигнализация о возникновении СЦР, и весь персонал цеха эвакуировался в подземный тоннель.

Было определено (по отсутствию активации натрия в крови), что никто не получил большой дозы радиации. Пик мощности пришелся на тот момент, когда операторы были на перерыве. Следующая рабочая смена по расписанию должна была заступить в 1 ч 00 мин, но заступающую смену не пустили на предприятие, и все работники предыдущей смены оставались на месте. Все операции по ликвидации аварии выполнялись дистанционно из комнаты начальника смены, находящейся примерно на расстоянии 30 м от места аварии; все работы велись до тех пор, пока система не была приведена в подкритическое состояние.

Спустя 15 минут после первого пика мощности были сделаны попытки дистанционно слить содержимое реактора N 2. С интервалом около 20 мин (в 1 ч 10 мин) возник второй пик мощности. Тогда, приблизительно на 15 мин, опять включили мешалку и нагрев, чем, как предполагается, задержали третий пик, который произошел через ~40 мин после второго.

Второй пик мощности, очевидно, не превышал первый, так как и в том, и в другом случае не сработали удаленные датчики.

Рисунок 17. Схема оборудования камеры.

После второго пика мощности на место прибыли начальник цеха и директор завода, а также специалисты службы ядерной безопасности и физики. Они и руководили всеми последующими операциями. Попытки дистанционно слить реактор N 2 с помощью различных способов продолжались до тех пор, пока не произошел третий и последний всплеск мощности, около 1 ч 55 мин. Было отмечено, что из реактора N 2 была выброшена часть раствора, так как на столешнице камеры появились его следы.

После 3-го пика сработали датчики аварийной сигнализации на большем расстоянии (до 150 м от места аварии), чем после 1-го и 2-го пиков. Спустя 0,5 часа после 3-го пика мощность дозы ?-излучения на расстоянии 10 м от камеры составляла 500 мкР/с.

После 3-го пика опять включили мешалку и нагрев для поддержания подкритического состояния системы в ходе выдачи активного раствора в стационарные емкости по штатным коммуникациям.

Окончательная выдача раствора представляла собой двухступенчатый процесс. Вначале примерно половина раствора реактора N 2 была передана в отдельную емкость, а затем по частям в несколько контейнеров. Эта процедура затем повторялась для оставшегося в реакторе N 2 раствора. Все контейнеры хранились в изолированной комнате, их содержимое было переработано только после того, когда уровень радиации снизился до определенного значения.

Порог срабатывания датчиков аварийной сигнализации составлял 110 мР/ч. Датчики размещались на расстоянии максимум 30 м друг от друга, обычно они располагались значительно ближе. Спустя 15 минут после первого пика мощности уровень радиации возле камеры составлял примерно 2,2 Р/ч; через 30 минут после третьего пика мощности уровень радиации возле камеры составлял 1,8 Р/ч.

Как было установлено, общее количество плутония в реакторе было 1,32 кг, что в ~3 раза превышало норму. В азотнокислом растворе содержалось 933 г плутония, и богатый осадок был обнаружен на дне реактора N 2. Он содержал 391 г плутония при массе 660 г, остальное составляла графитовая пульпа от тиглей. По косвенным и грубым оценкам, энерговыделение в реакторе за все три пика составило ~2 X 1017 делений. Был небольшой выброс раствора из реактора в камеру, скорее всего, во время третьей вспышки.

Несколько факторов повлияли на возникновение аварии:

• Опасная геометрия оборудования.

• Загрузка «богатых» шлаков в реактор на растворение, когда норма загрузки основывалась на средних значениях содержания плутония в шлаках.

• Хранение в камере «богатых» шлаков вместе с часто встречающимися «бедными» шлаками.

• Нечеткие и трудно читаемые надписи на емкостях со шлаками.

• Нарушение технологического процесса (последовательности) при загрузке реагентов.

• Неадекватный контроль над операциями со стороны руководства; неадекватное внимание к тому, чтобы все учетные документы велись должным образом.

• Отсутствие приборов технологического контроля.

Предполагаемой причиной аварии стала нейтрализация раствора в реакторе порцией шлаков, содержание плутония в которой оказалось аномально высоким.

Персонал в этой аварии не пострадал и не получил больших доз, что впоследствии подтвердилось при медицинском обследовании; разрушений не было, однако внутри камера была загрязнена соединениями плутония, и потребовалась дезактивация.

12. Сибирский химический комбинат, г. Северск, Химико-металлургический завод, 30 января 1963 г

Установка для растворения отходов, содержащих уран с обогащением 90 %; многочисленные всплески мощности; незначительные дозы облучения.

Установка являлась частью технологической линии по регенерации отходов металлургического производства урана. Отходы представляли собой труднорастворимые осадки, требовавшие длительного растворения в концентрированной азотной кислоте. Для оптимизации процесса в установке использовались два растворителя, загружавшихся поочередно. Схема установки изображена на рисунке 18.

Раствор из реактора в промежуточную емкость, далее на нутч-фильтр и сборник передавался с помощью вакуума. Все оборудование имело опасную геометрию, и предотвращение в нем критичности обеспечивалось ограничением массы делящегося материала и практически полностью зависело от надежности аналитического контроля урана в отходах и растворах.

Количество отходов, загружаемых в реактор-растворитель, рассчитывалось по результатам химического анализа на содержание урана в отходах. Перед загрузкой в растворитель отходы взвешивали. Технологическим регламентом допускалось повторное использование растворов с низкой концентрацией урана из сборников 64-А или 64-В для растворения очередной партии отходов в реакторах 61-А или 61-В, при этом масса урана в загружаемых на растворение отходах и возвращаемых растворах не должна была превышать установленного предела (нормы) загрузки урана. Для этого пробы раствора на анализ концентрации урана отбирали из сборников 64-А и 64-В.

Несмотря на важную роль аналитического контроля урана, результаты лабораторных анализов проб из отходов допускалось выражать любой из двух следующих единиц:

1) грамм урана на один килограмм отходов, г/кг;

2) отношение массы урана к массе отходов, массовая доля, %.

Для концентрации растворов использовалась только одна единица — г/л.

30.01.1963 г. на установку растворения поступили два контейнера с отходами и результатами

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×