пульсационную экстракционную колонну также безопасной геометрии. На трубопроводе, соединяющем передаточную емкость с дозатором, была установлена ловушка высотой 7,6 м, которая предотвращала всякие обратные перетоки и таким образом исключала миграцию плутония.
Всплеск мощности произошел по завершении пропускания партии раствора объемом 50 литров из емкости для корректировки растворов через передаточную емкость. Малая величина энерговыделения (1015 делений) и краткая продолжительность (менее 10 с) всплеска мощности исключали возможность прекращения цепной реакции с помощью какого-либо механизма аварийной защиты, срабатывающего при определенном уровне мощности. Измерения уровня радиации показали, что всплеск мощности произошел в передаточной емкости, однако раствор, поступивший из емкости для корректировки растворов, имел слишком низкую концентрацию плутония, чтобы достичь критического состояния, а общее количество плутония (300 г) в партии составляло приблизительно 50 % от минимальной критической массы. Все же существовало опасение, что в передаточной емкости могло содержаться большое количество осадков, возможно, десятки килограммов, и тогда любое возмущение в системе могло вызвать другой, возможно, гораздо более интенсивный всплеск мощности.
В бетонной крыше было прорезано отверстие диаметром около 150 мм, и была вскрыта вакуумная линия, ведущая к передаточной емкости. Содержимое передаточной емкости было обследовано с помощью волоконно-оптической системы (разработанной специально для этой операции). Было обнаружено, что в емкости содержится раствор. В емкость был введен пластиковый трубопровод малого диаметра, и в соседнее здание был перекачан с помощью сифонного эффекта раствор объемом 2,5 л. При исследовании жидкости были обнаружены трибутилфосфат и керосин с удельным весом 0,96 г/см3 и с концентрацией плутония, равной 55 г/л. Водный раствор из емкости для корректировки растворов имел плотность 1,3 г/см3. Столб водного раствора высотой 7,6 м в одном плече ловушки был достаточен для того, чтобы уравновесить приблизительно 10,3 м органики в другом плече. Таким образом, любое количество органики, попавшее в передаточную емкость, удерживалось в этом плече и могло накапливаться до тех пор, пока объем органики не соответствовал высоте 10,3 м от дна ловушки. В результате собрался объем органики, равный примерно 39 л, содержавший примерно 2,15 кг плутония. Деградация органики указывала на то, что она находилась в передаточной емкости в течение нескольких месяцев, а возможно, даже двух лет.
Каждый раз, когда партия водного раствора проходила через передаточную емкость, органика должна была набирать некоторое количество плутония из водного раствора. При каждом пропускании раствора через емкость концентрация плутония в трибутилфосфате и керосине увеличивалась. Та операция, после которой произошел всплеск мощности, возможно, добавила еще около 30 г плутония. Периодическая промывка установки большим количеством азотной кислоты, предположительно, уменьшала концентрацию плутония в накопленной органике. Таким образом, концентрация могла медленно увеличиваться, а затем резко уменьшалась после промывки. Перед тем, как система достигла критичности, могло пройти несколько таких циклов.
Расход раствора, сливавшегося из передаточной емкости, был недостаточен для того, чтобы можно было объяснить этим эффектом краткую продолжительность всплеска мощности.
Для наблюдения конфигурации, которую принимали жидкости при их передаче, была использована прозрачная пластиковая модель передаточной емкости. Ситуация, возникавшая при передаче раствора в емкости, показана на рисунке 26, А. Богатая органика с высокой концентрацией плутония (55 г/л) всплывала на поверхность раствора с малой концентрацией (от 6 до 7 г/л). Струя водного раствора, стекающего в центр емкости, создавала область с низкой реактивностью. Между органикой и водным раствором находилась область смешанных фаз толщиной около 7,5 см вблизи оси емкости. Эта конфигурация была подкритической.
Сразу после завершения передачи раствора центральная струя из водного раствора успевает исчезнуть, а область смешанных фаз все еще существует, и конфигурация достигает состояния с максимальной реактивностью (рис. 26, В). Разделение двух фаз происходит спустя несколько секунд после завершения пропускания раствора (рис. 26, С). Расчеты методом Монте Карло показали, что реактивность для состояния системы на рисунке 26, В, выше приблизительно на 5 в, чем на рисунке 26, А, и примерно на 10–15 в, чем на рисунке 26, С.
Очевидно, что промежуток времени между промывками азотной кислотой был достаточен для того, чтобы концентрация плутония возросла, и после пропускания раствора система стала слегка надкритической, что вызвало срабатывание аварийной сигнализации.
Во время аварии на установке находились два человека. Один из них получил, по оценкам, дозу около 2 рад, другой — менее 1 рада.
Данный инцидент иллюстрирует, какими сложными путями могут возникать аварии при работе с растворами. Хотя высокая ловушка считалась достаточной защитной мерой для предотвращения миграции плутония, она непосредственно повлияла на возникновение аварии. Трудность понимания того, что именно случилось, даже когда известно, в какой емкости произошел всплеск мощности, отлично показывает малую эффективность попыток оценки вероятности аварий для сложных процессов.
19. Радиохимический завод, шт. Айдахо, 17 октября 1978 г. 28 29 30
Раствор уранилнитрата, U(82 %), нижняя секция промывочной колонны; картина энерговыделения неизвестна; незначительные дозы облучения.
Авария произошла при выполнении технологического процесса на заводе по радиохимической переработке топлива, при котором растворенное облученное реакторное топливо подвергалось очистке в экстракционном процессе для выделения обогащенного урана и удаления продуктов деления. Технологический участок был оборудован радиационной защитой. В процессе экстракции осуществлялся противоток несмешивающихся водных и органических фаз в непосредственном контакте друг с другом. В результате контролируемого химического процесса материал переходил из водной фазы в органическую. Вдоль осей колонн были установлены цепочки перфорированных пластин, которые могли перемещаться вверх и вниз, образуя таким образом «пульсационную колонну», позволявшую повысить эффективность контакта между потоками двух жидкостей. Области с увеличенным диаметром, расположенные в верхней и нижней частях колонн, представляли собой разделительные секции, предназначенные для разделения водных и органических фаз.
В данной системе (рис. 27) менее плотная органика (смесь трибутилфосфата и керосина) подавалась в нижнюю часть колонны G-111, а водный раствор, содержащий уран и продукты деления, подавался в верхнюю часть колонны. При прохождении потоков через пульсационную колонну происходил переход урана из водной фазы в органическую, а продукты деления оставались в водном растворе. В нижней части колонны G-111 осуществлялся отбор проб водного раствора, содержащего продукты деления. Если при анализе проб содержание урана соответствовало установленной норме, то этот раствор направлялся в емкости для хранения отходов. Органическая фаза с концентрацией около 1 г/л направлялась из верхней части колонны G-111 в нижнюю разделительную секцию колонны H-100.
В колонне Н-100 органика вступала в контакт с чистым водным раствором (подававшимся сверху) для извлечения оставшихся продуктов деления. Для исключения перехода значительных количеств урана из органики в водную фазу добавляли нитрат алюминия, поддерживая его концентрацию на уровне 0,75 М. При нормальных условиях работы установки некоторое количество урана (примерно 0,15 г/л) все же захватывалось водным раствором. Поэтому данный раствор возвращался в колонну G-111, перемешиваясь с подаваемым на обработку водным раствором. Поток органики из колонны Н-100 с концентрацией,