B. Физические и нейтронные характеристики аварий с возникновением СЦР на технологических установках
В этом разделе мы рассмотрим физические и нейтронные характеристики аварий с возникновением СЦР, которые случились на ядерных промышленных установках Российской Федерации, Соединенных Штатов Америки, Соединенного Королевства Великобритании и Японии. Для того, чтобы оценить достоверность описаний аварий, мы сравнили физические параметры, сообщенные для каждой аварии, с известными из экспериментов условиями достижения критичности.
Восстановление картины аварии
Приведенных в документах об аварии данных о геометрии и составах материалов далеко недостаточно для того, чтобы рассматривать их в качестве контрольных параметров критичности, как они принимаются международным сообществом по ядерной безопасности 34. Из-за отсутствия сообщаемых технических деталей возможность точного восстановления аварийной обстановки серьезно ограничена. Восстановление картины аварий с 1 по 22 проводится с использованием интерпретации условий, сообщаемых для каждой такой аварии. Восстановление проводится с целью оценить аварийную конфигурацию, соответствующую критическому состоянию. Оцененные значения параметров, необходимых для такого восстановления, не следует интерпретировать как новые «факты», которые нужно добавить в документы об авариях.
В наших оценках рассматриваются лишь главные параметры, влияющие на критичность: делящийся материал (235U или 239Pu), его плотность, форма и степень замедления. В случаях аварий 9, 15 и 22 принималась также во внимание степень обогащения урана. Примеры параметров, которых для восстановления картины аварии недостает или которыми пренебрегли, как имеющими второстепенную важность, включают материал емкости, толщину ее стенок, наличие делящихся нуклидов иных, чем 235U и 239Pu, и наличие внешних отражателей вблизи делящегося материала или соприкасающихся с ним. Смеси материалов моделировались как однородные смеси металл — вода, из чего можно оценить степень замедления. Для нескольких аварий (2, 9, 15 и 21), о которых известно, что делящийся материал распределен неоднородно, такое упрощение было чрезмерным.
В таблице 9 представлены оцененные величины параметров для 22 аварий на технологических установках. Насколько мы знаем, этими 22 авариями исчерпывается полный список событий, которые однозначно квалифицируются как ядерные аварии на технологических установках в РФ, США, СК Великобритании и Японии.
Необходимо дать некоторое объяснение заголовков столбцов таблицы 9.
Номер аварии: 22 аварии пронумерованы в хронологическом порядке. Хронологический порядок был выбран в силу признания того, что технологические разработки этих четырех стран развивались во времени параллельно.
Площадка и дата: используется сокращенное наименование страны, в которой имела место авария: РФ, США, СК для аварий, которые соответственно произошли в Российской Федерации, Соединенных Штатах Америки и Соединенном Королевстве Великобритании. Дата аварии приводится в формате день — месяц — год.
Геометрия
Форма емкости: форма емкости, например, цилиндрическая с вертикальной осью. Хотя такое обозначение является точным для большинства аварий, некоторые аварии, как известно, произошли, когда ось симметрии цилиндрического сосуда была не вертикальной и не горизонтальной, а была наклонена под некоторым углом к вертикали.
Объем емкости: объем емкости означает ее полный объем.
Объем делящегося материала: это оцененное значение объема, занимаемого делящимся материалом, имевшим преобладающее влияние на нейтронную реактивность системы. В некоторых случаях (аварии 5 и 18) делящийся материал в низкой концентрации присутствовал и вне этого объема. Этот дополнительный материал имел второстепенное влияние на реактивность системы, и им, следовательно, можно было пренебречь. Для аварий, которые произошли или были смоделированы в условиях, когда цилиндрическая емкость имела вертикальную ось симметрии, а делящийся материал находился в виде раствора или суспензии, приводится дополнительный параметр h/D. В таких случаях делящийся материал моделировался как прямой круговой цилиндр (строчной буквой h обозначается высота цилиндра, а заглавной буквой D обозначается его диаметр).
Формфактор: это коэффициент формы, использовавшийся для преобразования реальной формы в эквивалентную сферическую форму, чтобы таким образом можно было сравнить эти 22 аварии с точки зрения геометрически эквивалентных сферических систем.
Для 18 аварий, для которых отношение h/D указано точно, для определения коэффициента формы была использована кривая «Без отражателя» (т. е. полученная в отсутствие отражателей) на рисунке 36 35. Кривая на рисунке 36 построена непосредственно на основе экспериментальных результатов, что сводит к минимуму зависимость от расчетов. Для остальных 3 аварий (номера 2, 6 и 20) для оценки коэффициента формы использовались лапласиан или другие математически простые аппроксимации.
Материал
Масса делящегося материала: это масса либо 235U, либо 239Pu. Тип делящегося материала приводится рядом с элементом столбца, означающим массу. В трех авариях, 9, 15 и 22, уран имел степень обогащения соответственно 22,6; 6,5 и 18,8 весовых процента. Для этих аварий в столбце «Масса делящегося материала» также приводится атомное отношение водорода к 235U. Для восьми аварий с плутонием было принято, что имелось 95 весовых % 239Pu.
Концентрация делящегося материала: это отношение массы делящегося материала к его объему в предположении, что смесь однородна.
Оцененная критическая масса в сфере: элементы этого столбца представляют собой значения сферической критической массы, определенные как отношение делящейся массы к коэффициенту формы. Эти оцененные массы используются как мера согласованности или согласия условий восстановленных картин аварий с установленными условиями возникновения цепной реакции. Для аварий 9, 15 и 22 критическая масса в сфере была подогнана к величине при полном отражении водой.