H2O-D2O; единичный всплеск мощности; один человек получил значительную дозу облучения.
Сборка «ВЕНУС» являлась критической сборкой корпусного типа с водяным замедлителем, которая использовалась в экспериментах наряду с реактором «Вулкан». Это был реактор с плавающим спектром нейтронов, потому что исходный замедлитель D2O можно было разбавлять H2O для смягчения спектра и поддержания реактивности по мере выгорания делящегося материала. Во время проводившихся на критсборке экспериментов замедлитель и отражатель состояли из 70 % H2O и 30 % D2O. Отражатель был на 0,3 м выше активной зоны. Размер активной зоны по высоте и диаметру составлял около 1,6 м. Топливом служил UO2 в виде таблеток, собранных в твэлы. Общая масса UO2 составляла 1,2 X 103 кг, обогащение по урану-235 равнялось 7 %.
Основным способом регулирования реактивности было перемещение поглощающих стержней (восемь стержней САОР и два регулирующих стержня). Дополнительно имелось восемь поглощающих стержней, предназначенных для ввода в активную зону вручную.
Непосредственно перед аварией в активную зону были опущены все стержни системы аварийной остановки реактора, один регулирующий стержень и семь стержней ручного управления. Еще один регулирующий стержень находился в процессе погружения, реактор находился в подкритическом состоянии, соответствующем весу одного стержня САОР и одного регулирующего стержня.
Для проведения эксперимента с новой конфигурацией стержней оператор реактора решил понизить реактивность путем погружения в активную зону последнего стержня ручного управления после того, как завершится введение в активную зону второго регулирующего стержня. При этом реактор должен был находиться в подкритическом состоянии, соответствующем весу одного стержня САОР, двух регулирующих стержней и одного стержня ручного управления. Тогда можно было извлечь из активной зоны другой стержень ручного управления, расположенный около стержня, вставленного последним, а затем перевести сборку в состояние критичности путем извлечения двух стержней САОР.
Такая программа предполагала, что оператор будет вводить один стержень и вынимать другой. Оператор пренебрег инструкцией, согласно которой запрещалось проводить какие-либо манипуляции стержнем ручного управления без предварительного удаления воды из корпуса реактора. Он дал технику письменное указание ввести один стержень ручного управления, а затем извлечь другой. Техник не дождался, когда движущийся регулирующий стержень достигнет конечного нижнего положения, и провел операцию в неправильном порядке. Вместо того, чтобы сначала ввести один стержень, а после этого извлекать второй, он сразу же извлек первый стержень.
Во время подъема стержня ручного управления сборка пришла в критическое состояние. Левая ступня техника выступала над краем бака, опираясь на решетку в 5 см над отражателем, правая нога была слегка отставлена назад и частично экранирована. Он заметил свечение на дне реактора, тут же бросил регулирующий стержень и покинул помещение.
Выделилась энергия, равная 13 МДж (4,3 X 1017 делений). По-видимому, всплеск мощности был остановлен падающим стержнем ручного управления, хотя возможно, что аварийная остановка была ускорена комбинацией эффекта Доплера и опорожнением корпуса, которое произошло при автоматическом срабатывании системы аварийной остановки реактора. Точной информации об этом нет.
Образование пара не наблюдалось, топливо не было повреждено, радиоактивного загрязнения не было. Техник получил очень большую дозу, в основном, из-за гамма облучения. Грубая оценка, сделанная через восемь дней после облучения по результатам 300 измерений, выполненных на фантоме человека, показала, что дозы облучения составляли 300–400 бэр для головы, 500 бэр для груди и 1750 бэр для левой лодыжки. На ступне доза облучения достигала 4000 бэр. Лечение пациента было успешным, но левую ступню пришлось ампутировать.
11. Российский научный центр 'Курчатовский институт', г. Москва, 15 февраля 1971 г. 80
Твэл из двуокиси урана, U(20 %), в сборке с отражателем из железа и бериллия; несколько всплесков мощности; два случая тяжелой степени облучения.
На стенде проводились исследования относительной эффективности железо-водного отражателя нейтронов и отражателя из металлического бериллия для активной зоны энергетического реактора. Активная зона размерами Н = 1200 мм и D = 1000 мм набиралась из 349 кассет с тепловыделяющими элементами стержневого типа. Компенсация оперативного запаса реактивности осуществлялась компенсирующей решеткой из стержней с карбидом бора, охватывающей центральную часть активной зоны. Три периферийных ряда кассет не охватывались решеткой. Компенсация реактивности на выгорание урана осуществлялась выгорающим поглотителем.
На первом этапе экспериментов изучалась активная зона с невыравненным по радиусу зоны распределением потока нейтронов. Измерения показали, что активная зона, полностью залитая водой при погруженной компенсирующей решетке, глубоко подкритична (~10 %), а изменение реактивности при замене железо-водного отражателя на бериллиевый невелико (+0,8 %).
На втором этапе предполагалось исследовать активную зону с выравненным по радиусу распределением потока нейтронов. В центральную часть активной зоны, перекрываемую компенсирующей решеткой, помещалось 147 кассет с наибольшим содержанием выгорающего поглотителя нейтронов. Далее шли два ряда кассет (118 шт.) с уменьшенным содержанием поглотителя. Периферийный ряд кассет (84 шт.) не содержал поглотителя нейтронов.
Второй этап экспериментов должен был начаться с применением бериллиевого отражателя, поскольку на нем закончилась первая серия опытов.
Расчеты критичности новой композиции активной зоны были сделаны только для варианта с применением железо-водного отражателя, а на основании результатов сравнения эффективности бериллиевого и железо-водного отражателей для первой композиции руководитель работы Д. А. Мастин считал, что замена стали на бериллий не даст существенного увеличения оперативного запаса реактивности.
Новая композиция активной зоны была собрана в сухом баке критстенда и оставлена на ночь. На следующий день утром Д. А. Мастин пришел в помещение стенда (рис. 60) и, не дожидаясь прихода оператора пульта управления и контролирующего физика, считая, что система глубоко подкритична, включил насос подачи воды в бак критсборки. Контрольно-измерительная аппаратура была включена, но нейтронный источник не был помещен в критсборку, и стержни аварийной защиты не были взведены.
Д. А. Мастин вместе с подошедшим стажером стояли у бака критсборки, обсуждая предстоящий эксперимент. Внезапно они увидели голубое свечение, отраженное от потолка зала, и услышали лавинообразное нарастание частоты звукового индикатора потока нейтронов (щелкуна). Подумав, что что- то произошло на соседнем стенде, на котором также производились подготовительные работы, они выбежали из зала критстендов. Другие сотрудники, находившиеся в зале, также покинули зал. О случившемся доложили начальнику сектора Н. А. Лазукову. Лазуков с дозиметристом попытались войти в зал, чтобы сбросить воду из бака критсборки, но радиационная обстановка и пар, заполнивший зал, не позволили подойти к пульту управления 2 критстенда. Насос продолжал подавать воду в бак критсборки. Через 5–7 минут зал критстендов был обесточен с электроподстанции, и подача воды в критсборку прекратилась.
Последующие оценки показали, что за то время, пока вода подавалась в критсборку, произошло примерно 50 вспышек. Поскольку нейтронного источника в критсборке не было, уровень воды в активной зоне поднимался до критического значения на мгновенных нейтронах, происходила быстротечная вспышка, вода вскипала и выплескивалась из бака, цепная реакция прекращалась. Затем вода доливалась до критического уровня, и процесс повторялся. Общее энерговыделение составило ~2 X 1019 делений (~103 МДж). Скорость ввода реактивности была сравнительно небольшой (~0,15 ? в секунду),