o | На месте | |||
2 | o | 3 | o | Влево |
3 | * | 3 | o | На месте |
4 | o | 4 | o | » » |
Чтобы изобразить состояние машины Тьюринга, можно напечатать все ячейки ленты, которые когда- либо рассматривались, и среди них — текущее состояние непосредственно слева от ячейки, находящейся под головкой в данный момент; такой способ мы будем считать стандартным. Мы получаем моментальный снимок; следующий пример показывает начало сложения 2 и 3:
1**,***
На рис. 13.1 показана последовательность моментальных снимков для всего вычисления. Отметим, что программа останавливается в состоянии 3, поскольку в ней не предусмотрены действия для пробела. Состояние 4 возникает только, если в исходных данных имеется ошибка; в этом случае машина попадает в бесконечный цикл. Убедитесь, что программа работает, если любое из исходных чисел (или оба) равно нулю.
Наш пример программы может показаться слишком простым. Попробуйте изменить программу, чтобы она выполняла не сложение, а умножение. Для машины Тьюринга единичная система счисления более естественна, чем любая другая; программа сложения десятичных чисел будет длиннее и сложнее. В литературе, указанной в библиографии, можно найти гораздо более подробный материал о машине Тьюринга и обоснование того, что машина Тьюринга может выполнить любое вычисление, выполнимое на какой-либо другой машине. Вы обнаружите небольшие отличия в разных описаниях машины Тьюринга и там же — доказательства того, что эти отличия ни на что не влияют.
Хотя в нашем описании именами состояний были положительные целые числа, ваш имитатор должен допускать в качестве имени состояния произвольный идентификатор. В предыдущем примере мы могли бы назвать состояния
ДвижениеВправо o Конец o Влево
Теперь у нас нет выделенного первого состояния, поэтому его должен указать пользователь.
Трассировочная информация должна печататься после каждого изменения состояния. Она должна включать в себя: содержимое всей ленты до самого правого непробела или до головки, в зависимости от того, что находится правее, положение головки и текущее состояние. Вероятно, содержимое ленты следует напечатать на одной строке, а указатель головки и состояние — на следующей. Руководствуйтесь соображениями красоты и ясности. Алфавит ленты, т. е. множество символов, которые могут появляться на ленте, есть просто набор литер, встречающихся где-либо во второй или четвертой компоненте пятерки. Программа должна позволять использовать любую нормальную литеру, имеющуюся в вашей системе. В алфавит всегда входит пробел. Его непросто изобразить в исходных данных, а появляясь в выходной строке, пробелы могут вносить неразбериху. Проблему с вводом можно обойти, если, например, разделять пять компонент команды запятыми. Работа со значащими пробелами часто вызывает затруднения. В естественных языках пробелы осмысленны, но обычно лишь как разделители слов, а не как полноправные символы. Таким образом не существует какого-либо стандартного соглашения об употреблении пробелов в качестве символов.
Дэвис (Davis M.). Computability and Unsolvability, McGraw-Hill, New York, NY, 1958.
Дэвис приводит с изматывающими подробностями все те доказательства, которые другие авторы «оставляют читателю». Прочитав Дэвиса от корки до корки, вы уже никогда не усомнитесь в справедливости любого утверждения о мощи машины Тьюринга. Впрочем, вполне возможно, что у вас навсегда пропадет охота что бы то ни было слышать об этой машине.
Хопкрофт, Ульман (Hopcroft J. E., Ullman J. D). Formal Languages and Their Relation to Automata. Addison-Wesley, Reading, MA, 1969.
Книга Хопкрофга и Ульмана — наилучший в своей области учебник для аспирантов первого года обучения. В ней содержатся все основные результаты о машинах Тьюринга, причем они излагаются в контексте других классов автоматов Книга полезна также своей обширной библиографией.
Минский (Minsky M. L.). Computation: Finite and Infinite Machines. Prentice-Hall, Englewood Cliffs NJ, 1967.