mammals, including giant kangaroos, rhinolike marsupials called diprotodonts and reaching the size of a cow, and a marsupial 'leopard.' It also formerly had a 400-pound ostrichlike flightless bird, plus some impressively big reptiles, including a one-ton lizard, a giant python, and land-dwelling crocodiles. All of those Australian/New Guinean giants (the so-called megafauna) disappeared after the arrival of humans. While there has been controversy about the exact timing of their demise, several Australian archaeological sites, with dates extending over tens of thousands of years, and with prodigiously abundant deposits of animal bones, have been carefully excavated and found to contain not a trace of the now extinct giants over the last 35,000 years. Hence the megafauna probably became extinct soon after humans reached Australia. The near-simultaneous disappearance of so many large species raises an obvious question: what caused it? An obvious possible answer is that they were killed off or else eliminated indirectly by the first arriving humans. Recall that Australian/New Guinean animals had evolved for millions of years in the absence of human hunters. We know that Galapagos and Antarctic birds and mammals, which similarly evolved in the absence of humans and did not see humans until modern times, are still incurably tame today. They would have been exterminated if conservationists had not imposed protective measures quickly. On other recently discovered islands where protective measures did not go into effect quickly, exterminations did indeed result: one such victim, the dodo of Mauritius, has become virtually a symbol for extinction. We also know now that, on every one of the well-studied oceanic islands colonized in the prehistoric era, human colonization led to an extinction spasm whose victims included the moas of New Zealand, the giant lemurs of Madagascar, and the big flightless geese of Hawaii. Just as modern humans walked up to unafraid dodos and island seals and killed them, prehistoric humans presumably walked up to unafraid moas and giant lemurs and killed them too. Hence one hypothesis for the demise of Australia's and New Guinea's giants is that they met the same fate around 40,000 years ago. In contrast, most big mammals of Africa and Eurasia survived into modern times, because they had coevolved with protohumans for hundreds of thousands or millions of years. They thereby enjoyed ample time to evolve a fear of humans, as our ancestors' initially poor hunting skills slowly improved. The dodo, moas, and perhaps the giants of Australia/New Guinea had the misfortune suddenly to be confronted, without any evolutionary preparation, by invading modern humans possessing fully developed hunting skills. However, the overkill hypothesis, as it is termed, has not gone unchallenged for Australia/New Guinea. Critics emphasize that, as yet, no one has documented the bones of an extinct Australian/New Guinean giant with compelling evidence of its having been killed by humans, or even of its having lived in association with humans. Defenders of the overkill hypothesis reply: you would hardly expect to find kill sites if the extermination was completed very quickly and long ago, such as within a few millennia some 40,000 years ago. The critics respond with a countertheory: perhaps the giants succumbed instead to a change in climate, such as a severe drought on the already chronically dry Australian continent. The debate goes on. Personally, I can't fathom why Australia's giants should have survived innumerable droughts in their tens of millions of years of Australian history, and then have chosen to drop dead almost simultaneously (at least on a time scale of millions of years) precisely and just coincidentally when the first humans arrived. The giants became extinct not only in dry central Australia but also in drenching wet New Guinea and southeastern Australia. They became extinct in every habitat without exception, from deserts to cold rain forest and tropical rain forest. Hence it seems to me most likely that the giants were indeed exterminated by humans, both directly (by being killed for food) and indirectly (as the result of fires and habitat modification caused by humans). But regardless of whether the overkill hypothesis or the climate hypothesis proves correct, the disappearance of all of the big animals of Australia/New Guinea had, as we shall see, heavy consequences for subsequent human history. Those extinctions eliminated all the large wild animals that might otherwise have been candidates for domestication, and left native Australians and New Guineans with not a single native domestic animal. Thus, the colonization of Australia/New Guinea was not achieved until around the time of the Great Leap Forward. Another extension of human range that soon followed was the one into the coldest parts of Eurasia. While Neanderthals lived in glacial times and were adapted to the cold, they penetrated no farther north than northern Germany and Kiev. That's not surprising, since Neanderthals apparently lacked needles, sewn clothing, warm houses, and other technology essential to survival in the coldest climates. Anatomically modern peoples who did possess such technology had expanded into Siberia by around 20,000 years ago (there are the usual much older disputed claims). That expansion may have been responsible for the extinction of Eurasia's woolly mammoth and woolly rhinoceros. With the settlement of Australia/New Guinea, humans now occupied three of the five habitable continents. (Throughout this book, I count Eurasia as a single continent, and I omit Antarctica because it was not reached by humans until the 19th century and has never had any self-supporting human population.) That left only two continents, North America and South America. They were surely the last ones settled, for the obvious reason that reaching the Americas from the Old World required either boats (for which there is no evidence even in Indonesia until 40,000 years ago and none in Europe until much later) in order to cross by sea, or else it required the occupation of Siberia (unoccupied until about 20,000 years ago) in order to cross the Bering land bridge. However, it is uncertain when, between about 14,000 and 35,000 years ago, the Americas were first colonized. The oldest unquestioned human remains in the Americas are at sites in Alaska dated around 12,000 B.C., followed by a profusion of sites in the United States south of the Canadian border and in Mexico in the centuries just before 11,000 B.C. The latter sites are called Clovis sites, named after the type site near the town of Clovis, New Mexico, where their characteristic large stone spearpoints were first recognized. Hundreds of Clovis sites are now known, blanketing all 48 of the lower U.S. states south into Mexico. Unquestioned evidence of human presence appears soon thereafter in Amazonia and in Patagonia. These facts suggest the interpretation that Clovis sites document the Americas' first colonization by people, who quickly multiplied, expanded, and filled the two continents. One might at first be surprised that Clovis descendants could reach Patagonia, lying 8,000 miles south of the U.S.-Canada border, in less than a thousand years. However, that translates into an average expansion of only 8 miles per year, a trivial feat for a hunter-gatherer likely to cover that distance even within a single day's normal foraging. One might also at first be surprised that the Americas evidently filled up with humans so quickly that people were motivated to keep spreading south toward Patagonia. That population growth also proves unsurprising when one stops to consider the actual numbers. If the Americas eventually came to hold hunter-gatherers at an average population density of somewhat under one person per square mile (a high value for modern hunter-gatherers), then the whole area of the Americas would eventually have held about 10 million hunter-gatherers. But even if the initial colonists had consisted of only 100 people and their numbers had increased at a rate of only 1.1 percent per year, the colonists' descendants would have reached that population ceiling of 10 million people within a thousand years. A population growth rate of 1.1 percent per year is again trivial: rates as high as 3.4 percent per year have been observed in modern times when people colonized virgin lands, such as when the HMS Bounty mutineers and their Tahitian wives colonized Pitcairn Island. The profusion of Clovis hunters' sites within the first few centuries after their arrival resembles the site profusion documented archaeologically for the more recent discovery of New Zealand by ancestral Maori. A profusion of early sites is also documented for the much older colonization of Europe by anatomically modern humans, and for the occupation of Australia/New Guinea. That is, everything about the Clovis phenomenon and its spread through the Americas corresponds to findings for other, unquestioned virgin- land colonizations in history. What might be the significance of Clovis sites' bursting forth in the centuries just before 11,000 B.C., rather than in those before 16,000 or 21,000 B.C.? Recall that Siberia has always been cold, and that a continuous ice sheet stretched as an impassable barrier across the whole width of Canada during much of the Pleistocene Ice Ages. We have already seen that the technology required for coping with extreme cold did not emerge until after anatomically modern humans invaded Europe around 40,000 years ago, and that people did not colonize Siberia until 20,000 years later. Eventually, those early Siberians crossed to Alaska, either by sea across the Bering Strait (only 50 miles wide even today) or else on foot at glacial times when Bering Strait was dry land. The Bering land bridge, during its millennia of intermittent existence, would have been up to a
Вы читаете Guns, Germs & Steel
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×