4 | 0 |
В нашем «расписании» зарегистрированы пять событий, каждое из которых представлено двумя числами — временем и пространственной координатой каждого события. Первое событие есть начало движения камня с высоты 80 м от земли в момент времени, равный нулю. Второе событие есть совпадение камня с отметкой на стержне на высоте 75 м от земли. Это будет отмечено по истечении одной секунды. Последнее событие есть удар камня о землю.
Те сведения, которые записаны в «расписании», можно было бы представить иначе. Пять пар чисел его можно было бы представить как пять точек на плоскости. Установим сначала масштаб. Например: пусть один отрезок будет изображать метр, а другой секунду (рис. 68).
Рис. 68
Затем начертим две перпендикулярные линии; одну из них, скажем горизонтальную, назовем временно?й осью, вертикальную же — пространственной осью. Мы сразу же видим, что наше «расписание» можно представить пятью точками в пространственно-временно?й плоскости (рис. 69).
Рис. 69
Расстояния точек от пространственной оси представляют собой координаты времени, указанные в первой колонке «расписания», а расстояния от временно?й оси — их пространственные координаты.
Одна и та же связь выражена двумя способами — с помощью «расписания» и точками на плоскости. Одно может быть построено из другого. Выбор между этими двумя представлениями является лишь делом вкуса, ибо в действительности они оба эквивалентны.
Сделаем теперь еще один шаг. Представим себе улучшенное «расписание», дающее положения не для каждой секунды, а, скажем, для каждой сотой или тысячной доли секунды. Тогда у нас будет много точек в нашей пространственно-временно?й плоскости. Наконец, если положение дается для каждого мгновения или, как говорят математики, если пространственная координата дается как функция времени, то совокупность точек становится непрерывной линией. Поэтому наш следующий рисунок (рис. 70) дает не отрывочные сведения, как прежде, а полное представление о движении камня.
Рис. 70
Движение вдоль твердого стержня (башни), т. е. движение в одномерном пространстве, представлено здесь в виде кривой в двумерном пространственно-временно?м континууме. Каждой точке в нашем пространственно-временно?м континууме соответствует пара чисел, одно из которых отмечает временну?ю, а другое — пространственную координату. Наоборот, определенная точка в нашем пространственно-временно?м континууме соответствует некоторой паре чисел, характеризующей событие. Две соседние точки представляют собой два события, происшедших в местах, близких друг от друга, и в моменты времени, непосредственно следующие друг за другом.
Вы могли бы возразить против нашего способа представления следующим образом: мало смысла в том, чтобы представлять время отрезками и механически соединять его с пространством, образуя двумерный континуум из двух одномерных континуумов. Но тогда вы должны были бы столь же серьезно протестовать против всех графиков, представляющих, например, изменение температуры в Нью-Йорке в течение последнего лета, или против графиков, изображающих изменение стоимости жизни за последние несколько лет, так как в каждом из этих случаев употребляется тот же самый метод. В температурных графиках одномерный температурный континуум соединяется с одномерным временны?м континуумом в двумерный температурно-временной континуум.
Вернемся к частице, падающей с 80-метровой башни. Наша графическая картина движения есть полезное соглашение, так как она позволяет нам характеризовать положение частицы в любой произвольный момент времени. Зная, как движется частица, мы хотели бы изобразить ее движение еще раз. Сделать это можно двумя путями.
Вспомним изображение частиц, изменяющих свое положение со временем в одномерном пространстве. Мы изображаем движение как ряд событий в одномерном пространственном континууме. Мы не смешиваем время и пространство, применяя
Но можно изобразить то же самое движение другим путем. Мы можем образовать
Обе эти картины совершенно равноценны, и предпочтение одной из них перед другой есть лишь дело соглашения и вкуса.
То, что здесь сказано о двух картинах движения, не имеет отношения к теории относительности. Оба представления могут быть использованы с одинаковым правом, хотя классическая теория скорее предпочитала динамическую картину описания движения как того, что происходит в пространстве, статической картине, описывающей его в пространстве-времени. Но теория относительности изменила этот взгляд. Она явно предпочла статическую картину и нашла в этом представлении движения как того, что существует в пространстве-времени, более удобную и более объективную картину реальности. Мы должны еще ответить на вопрос, почему эти две картины эквивалентны с точки зрения классической физики и не эквивалентны с точки зрения теории относительности. Ответ будет понятным, если снова рассмотреть две системы координат, движущиеся прямолинейно и равномерно друг относительно друга.
Согласно классической физике, наблюдатели в обеих системах, движущихся прямолинейно и равномерно друг относительно друга, найдут для одного и того же события различные пространственные координаты, но одну и ту же временну?ю координату. Таким образом, в нашем примере удар камня о землю характеризуется при нашем выборе системы координат временно?й координатой 4 и пространственной координатой 0. Согласно классической механике, наблюдатели, движущиеся прямолинейно и равномерно относительно выбранной системы координат, обнаружат, что камень достигнет земли спустя четыре секунды после начала падения. Но каждый из наблюдателей относит расстояние к своей системе координат, и они будут, вообще говоря, связывать различные пространственные координаты с событием соударения, хотя временна?я координата будет одной и той же для всех других наблюдателей, движущихся прямолинейно и равномерно друг относительно друга. Классическая физика знает только «абсолютное» время, текущее одинаково для всех наблюдателей. Для каждой системы координат двумерный континуум может быть разбит на два одномерных континуума — время и пространство. Благодаря «абсолютному» характеру времени переход от «статики» к «динамической» картине движения имеет в классической физике объективный смысл.
Но мы уже убедились в том, что классические преобразования не могут применяться в физике в общем случае. С практической точки зрения они еще пригодны для малых скоростей, но не годятся для обоснования фундаментальных физических вопросов.
Согласно теории относительности, момент соударения камня с землей не будет одним и тем же для всех наблюдателей. И временна?я, и пространственная координата будут различными в двух различных системах координат, и изменение временно?й координаты будет весьма заметным, если относительная скорость систем приближается к скорости света. Двумерный континуум не может быть разбит на два одномерных континуума, как в классической физике. Мы не можем рассматривать пространство и время раздельно при определении пространственно-временны?х координат в другой системе координат. Разделение двумерного континуума на два одномерных оказывается с точки зрения теории относительности