точки (рис. 5). Так как исходная точка не существенна, то эти векторы могут представлять скорости четырех автомашин, движущихся из одного пункта, либо же скорости четырех автомашин в различных частях страны, путешествующих с указанными скоростями в указанных направлениях.
Рис. 5
Это векторное представление можно применить к описанию обсуждавшихся ранее фактов прямолинейного движения. Мы говорили о тележке, движущейся равномерно по прямой и получающей толчок в направлении ее движения, который увеличивает ее скорость. Графически это можно представить двумя векторами: коротким, обозначающим скорость до толчка, и длинным, имеющим то же направление и обозначающим скорость после толчка (рис. 6).
Рис. 6
Значение пунктирного вектора ясно. Он представляет собой изменение скорости, вызванное толчком. В случае, когда сила направлена против движения и движение замедляется, диаграмма выглядит иначе (рис. 7).
Рис. 7
Пунктирный вектор опять соответствует изменению скорости, но в этом случае его направление иное. Ясно, что не только сами скорости, но и их изменения — тоже векторы. Но всякое изменение скорости вызвано внешней силой; следовательно, и сила должна быть представлена тоже вектором. Для того чтобы характеризовать силу, недостаточно установить, с каким усилием мы толкаем тележку; мы должны также сказать, в каком направлении мы толкаем. Сила, как и скорость, и ее изменение, должна быть представлена вектором, а не только одним числом. Поэтому внешняя сила — это тоже вектор, который должен иметь то же направление, что и изменение скорости. На обоих рисунках пунктирные векторы показывают как направление силы, так и изменение скорости.
Здесь скептик может заметить, что он не видит никакого преимущества от введения векторов. Все, что было сделано, — это перевод признанных ранее фактов на необычный и сложный язык. В этой стадии, в самом деле, было бы трудно убедить скептика, что он не прав. Пока он действительно прав. Но мы увидим, что именно этот странный язык приводит к важным обобщениям, в которых векторы оказываются существенными.
Загадка движения
До тех пор пока мы имеем дело с прямолинейным движением, мы далеки от понимания движений, наблюдаемых в природе. Мы должны рассмотреть криволинейные движения. Наш следующий шаг — определить законы, управляющие такими движениями. Это нелегкая задача.
В случае прямолинейного движения понятия скорости, изменения скорости и силы оказались чрезвычайно полезными. Но мы не видим непосредственно, как можно применить их к случаю криволинейного движения. В самом деле, можно представить себе, что старые понятия окажутся непригодными для описания движения в общем случае и что нужно создать новые понятия. Следует ли нам пробовать идти старыми путями или нужно искать новые?
Обобщение понятий — процесс, часто применяемый в науке. Метод обобщения не определен однозначно, ибо обычно существует множество путей его осуществления. Однако при всяком обобщении должно быть строго удовлетворено одно требование: любое обобщенное понятие должно сводиться к первоначальному, когда выполнены первоначальные условия.
Лучше всего это можно объяснить на примере, с которым мы имеем дело теперь. Мы можем попробовать обобщить прежние понятия скорости, изменения скорости и силы для случая движения вдоль кривой. Когда мы говорим о кривой, мы включаем в это понятие и прямую. Прямая есть самый простой пример кривой. Поэтому если скорость, изменение скорости и сила введены для движения по кривой, то они тем самым автоматически вводятся и для движения по прямой. Но этот результат не должен противоречить результатам, полученным раньше. Если кривая становится прямой, то все обобщенные понятия должны свестись к обычным понятиям, описывающим прямолинейное движение. Но это ограничение недостаточно, чтобы однозначно определить обобщение. Оно явно оставляет многие возможности. История науки показывает, что самые простые обобщения иногда оказываются удачными, а иногда нет. Мы должны сперва делать догадки. В нашем случае нетрудно найти правильный метод обобщения. Новые обобщенные понятия оказываются очень удачными и помогают нам понять как движение брошенного камня, так и движение планет.
Что же означают слова «скорость», «изменение скорости» и «сила» в общем случае криволинейного движения? Начнем со скорости. Пусть вдоль кривой слева направо движется очень маленькое тело (рис. 8). Такое маленькое тело часто называют
Рис. 8
Вектор на рис. 9 указывает предполагаемое направление равномерного движения в случае, если бы все внешние силы исчезли. Это так называемое тангенциальное, или касательное, направление. Если смотреть на движущуюся частицу через микроскоп, то можно увидеть очень небольшую часть ее пути, представляющуюся в виде небольшого, едва искривленного отрезка. Касательная линия является его продолжением. Нарисованный таким образом вектор представляет скорость в данный момент. Вектор скорости лежит на касательной. Его длина представляет собой численную величину скорости или ту скорость, которая указывается, например, спидометром автомашины.
Рис. 9
Наш идеализированный эксперимент, в котором уничтожены силы для того, чтобы найти вектор скорости, нельзя принимать слишком серьезно. Он только помогает нам понять, что? мы должны называть вектором скорости при криволинейном движении, и позволяет нам определить его для данного момента в данной точке.
На рис. 10 показаны векторы скорости для трех различных положений частицы, движущейся вдоль кривой. В этом случае во время движения меняются не только направления, но и величины скорости, как показывает длина векторов.
Рис. 10
Удовлетворяет ли это новое понятие скорости требованию, сформулированному для всех обобщений? Иначе говоря, сводится ли оно к прежнему понятию скорости, если кривая становится прямой? Очевидно, да. Касательная к прямой есть сама прямая. Вектор скорости лежит на линии движения, так же как это было в случае движущейся тележки или катящегося шара.