внешнего электромагнитного поля или же быть свободным от всех внешних воздействий. Он может двигаться, например, в поле атомного ядра или может дифрагировать, проходя через кристалл. Квантовая физика учит нас, как формулировать математические уравнения для любой из этих проблем.
Мы уже указывали на аналогию между колеблющейся струной, мембраной барабана, духовым инструментом или любым другим музыкальным инструментом, с одной стороны, и излучающим атомом — с другой. Имеется некоторое сходство и между математическими уравнениями, управляющими акустическими явлениями, и уравнениями, управляющими явлениями квантовой физики. Но опять физическое толкование величин, используемых в этих случаях, совершенно различно. Физические величины, описывающие колеблющуюся струну и излучающий атом, имеют совершенно разный смысл, несмотря на некоторое формальное сходство в уравнениях. В случае струны мы спрашиваем об отклонении произвольной точки от ее нормального положения в произвольный момент времени. Зная форму колеблющейся струны в данный момент, мы знаем всё, что нам надо. Отклонение от нормального положения для любого другого момента можно рассчитать из математических уравнений для колеблющейся струны. Тот факт, что некоторое определенное отклонение от нормального положения соответствует каждой точке струны, выражается более строго следующим образом: в любой момент времени отклонение от нормального положения есть
Аналогично в случае электрона некоторая функция определена в любой точке пространства в любой момент времени. Назовем эту функцию
Таким образом, уравнения квантовой физики определяют волну вероятности так же, как уравнения Максвелла определяют электромагнитное поле, а гравитационные уравнения определяют поле тяготения. Законы квантовой физики суть опять-таки структурные законы. Но смысл физических понятий, определяемых этими уравнениями квантовой физики, гораздо более абстрактен, чем в случае электромагнитного поля и поля тяготения; они дают только математическое средство для разрешения вопросов статистического характера.
До сих пор мы рассматривали электрон в некотором внешнем поле. Если бы это был не электрон, наименьший из возможных зарядов, а некоторый заметный заряд, содержащий биллион электронов, мы могли бы отбросить всю квантовую теорию и трактовать задачу согласно нашей старой доквантовой физике. Говоря о токах в проводниках, о заряженных проводниках, об электромагнитных волнах, мы можем применять нашу старую простую физику, содержащуюся в уравнениях Максвелла. Но мы не можем этого делать, когда говорим о фотоэлектрическом эффекте, об интенсивности спектральных линий, радиоактивности, дифракции электронных волн и о многих других явлениях, в которых обнаруживается квантовый характер вещества и энергии. Тогда мы должны, так сказать, идти этажом выше. В то время как в классической физике мы говорили о координатах и скоростях одной частицы, теперь мы должны рассматривать волны вероятности в трехмерном континууме, соответствующие этой задаче об одной частице.
Если мы раньше учились, как толковать задачу с точки зрения классической физики, то квантовая механика дает свой собственный рецепт толкования аналогичной задачи.
Для одной элементарной частицы, электрона или фотона, мы имеем волны вероятности в трехмерном континууме, характеризующие статистическое поведение системы, если эксперименты часто повторяются. Но как дело обстоит в случае не одной, а двух взаимодействующих частиц, например двух электронов, электрона и фотона или электрона и ядра? Мы не можем рассматривать их отдельно и описывать каждый из них с помощью волны вероятности в трех измерениях именно благодаря их взаимодействию. В самом деле, не очень трудно догадаться, как следует описывать в квантовой механике систему, состоящую из двух взаимодействующих частиц. Мы должны спуститься на один этаж, вернуться на минуту к классической физике. Положение двух материальных точек в пространстве в любой момент характеризуется шестью числами, по три для каждой точки. Все возможные положения двух материальных точек образуют шестимерный континуум, а не трехмерный, как это было в случае одной точки. Если мы теперь снова поднимемся на один этаж, к квантовой физике, мы будем иметь волны вероятности в шестимерном, а не в трехмерном континууме, как это было в случае одной частицы. Аналогично этому для 3, 4 и более частиц волны вероятности будут функциями в континууме 9, 12 и более измерений.
Это ясно показывает, что волны вероятности более абстрактны, чем электромагнитное и гравитационное поля, существующие и распространяющиеся в нашем трехмерном пространстве. Континуум многих измерений образует фон для волн вероятности, и только для одной частицы число измерений становится равным числу измерений физического пространства. Единственное физическое значение волны вероятности состоит в том, что она позволяет нам дать ответ на разумные вопросы статистического характера как в случае многих частиц, так и в случае одной. Так, например, в случае одного электрона мы могли бы спросить о вероятности нахождения электрона в некотором определенном месте. Для двух частиц наш вопрос был бы таким: какова вероятность встречи двух частиц в двух данных местах в данный момент времени?
Наш первый отход от классической физики состоял в отказе от описания индивидуальных случаев как объективных событий в пространстве и времени. Мы были вынуждены использовать статистический метод с его волнами вероятности. Встав однажды на этот путь, мы вынуждены и дальше идти путем абстракций. Необходимо было ввести и волны вероятности во многих измерениях, соответствующие задаче о многих частицах.
Ради краткости назовем всё, кроме квантовой физики, физикой классической. Классическая и квантовая физика различаются радикально. Классическая физика видит свою цель в описании объектов, существующих в пространстве, и в формулировке законов, управляющих их изменениями во времени. Но явления, обнаруживающие дискретную и волновую природу вещества и излучения, несомненный статистический характер таких элементарных явлений, как радиоактивный распад, дифракция, испускание света атомами и многие другие, вынуждают нас отказаться от этого взгляда. Квантовая физика не ставит своей целью описание индивидуальных объектов в пространстве и их изменений во времени. В квантовой физике нет места таким утверждениям, как: «Этот объект таков-то, он имеет такое-то свойство». Вместо этого мы имеем утверждения такого рода: «Имеется такая-то вероятность того, что индивидуальный объект таков-то и что он имеет такое-то свойство». В квантовой физике нет места для законов, управляющих изменениями индивидуального объекта во времени. Вместо этого мы имеем законы, управляющие изменениями вероятности во времени. Только это фундаментальное изменение, внесенное в физику квантовой теорией, сделало возможным адекватное объяснение событий несомненно дискретного и статистического характера в той области явлений, в которой обнаруживают свое существование элементарные кванты вещества и излучения.
Однако возникают новые, еще более трудные проблемы, пока еще не сформулированные ясно. Мы напомним лишь о некоторых из этих нерешенных проблем. Наука не является и никогда не будет являться законченной книгой. Каждый важный успех приносит новые вопросы. Всякое развитие обнаруживает со временем все новые и более глубокие трудности.
Мы уже знаем, что в простом случае одной или многих частиц мы можем перейти от классического к квантовому описанию, от объективного описания событий в пространстве и времени к волнам вероятности. Но мы помним весьма важное понятие поля в классической физике.
Как описать взаимодействие между элементарным квантом вещества и полем? Если для квантового описания 10 частиц необходима волна вероятности в 30 измерениях, то для квантового описания поля была бы необходима волна вероятности с бесконечным числом измерений. Переход от классического понятия поля