“candescence” of Venus than to the radiation it now receives from the Sun. But this is a serious error. The bolometric albedo (the fraction of sunlight reflected by an object at all wavelengths) of Venus is about 0.73, entirely consistent with the observed infrared temperature of the clouds of Venus of about 240°K; that is to say, the clouds of Venus are precisely at the temperature expected on the basis of the amount of sunlight that is absorbed there.
Velikovsky proposed that both Venus and Mars give off more heat than they receive from the Sun. He is wrong for both planets. In 1949 Kuiper (see References) suggested that Jupiter gives off more heat than it receives, and subsequent observations have proved him right. But of Kuiper’s suggestion
Velikovsky proposed that Venus is hot because of its encounters with Mars and the Earth, and its close passage to the Sun. Since Mars is not anomalously hot, the high surface temperature of Venus must be attributed primarily to the passage of Venus near the Sun during its cometary incarnation. But it is easy to calculate how much energy Venus would have received during its close passage to the Sun and how long it would take for this energy to be radiated away into space. This calculation is performed in Appendix 3, where we find that all of this energy is lost in a period of months to years after the close passage to the Sun, and that there is no chance of any of that heat being retained at the present time in Velikovsky’s chronology. Velikovsky does not mention how close to the Sun Venus is supposed to have passed, but a very close passage compounds the already extremely grave collision physics difficulties outlined in Appendix 1. Incidentally, there is a slight hint in
Velikovsky nowhere states the temperature he believed Venus to be at in 1950. As mentioned above, on page 77 he says vaguely that the comet that later became Venus was in a state of “candescence,” but in the preface to the 1965 edition (page xi), he claims to have predicted “an incandescent state of Venus.” This is not at all the same thing, because of the rapid cooling after its supposed solar encounter (Appendix 3). Moreover, Velikovsky himself is proposing that Venus is cooling through time, so what precisely Velikovsky meant by saying that Venus is “hot” is to some degree obscure.
Velikovsky writes in the 1965 preface that his claim of a high surface temperature was “in total disagreement with what was known in 1946.” This turns out to be not quite the case. The dominant figure of Rupert Wildt again looms over the astronomical side of Velikovsky’s hypothesis. Wildt, who, unlike Velikovsky, understood the nature of the problem, predicted correctly that Venus and not Mars would be “hot.” In a 1940 paper in the
We now know from ground-based radio observations and from the remarkably successful direct entry and landing probes of the Soviet Union that the surface temperature of Venus is within a few degrees of 750°K (Marov, 1972). The surface atmospheric pressure is about ninety times that at the surface of the Earth, and is comprised primarily of carbon dioxide. This large abundance of carbon dioxide, plus the smaller quantities of water vapor which have been detected on Venus, are adequate to heat the surface to the observed temperature via the greenhouse effect. The Venera 8 descent module, the first spacecraft to land on the illuminated hemisphere of Venus, found it illuminated at the surface, and the Soviet experimenters concluded that the amount of sunlight reaching the surface and the atmospheric constitution were together adequate to drive the required radiative-convective greenhouse (Marov,
A repeated claim by Velikovsky is that Venus is cooling off with time. As we have seen, he attributes its high temperature to solar heating during a close solar passage. In many publications Velikovsky compares published temperature measurements of Venus, made at different times, and tries to show the desired cooling. An unbiased presentation of the microwave brightness temperatures of Venus-the only nonspacecraft data that apply to the surface temperature of the planet-are exhibited in Figure 1. The error bars represent the uncertainties in the measurement processes as estimated by the radio observers themselves. We see that there is not the faintest hint of a decline in temperature with time (if anything, there is a suggestion of an increase with time, but the error bars are sufficiently large that such a conclusion is also unsupported by the data). Similar results apply to measurements, in the infrared part of the spectrum, of cloud temperatures: they are lower in magnitude and do not decline with time. Moreover, the simplest considerations of the solution of the one-dimensional equation of heat conduction show that in the Velikovskian scenario essentially all the cooling by radiation to space would have occurred long ago. Even if Velikovsky were right about the source of the high Venus surface temperatures, his prediction of a secular temperature decrease would be erroneous.
FIGURE 1. Microwave brightness temperatures of Venus as a function of time (after a compilation by D. Morrison). There is certainly no evidence of a declining surface temperature. The wavelength of observation is denoted by ?.
The high surface temperature of Venus is another of the so-called proofs of the Velikovsky hypothesis. We find that (1) the temperature in question was never specified; (2) the mechanism proposed for providing this temperature is grossly inadequate; (3) the surface of the planet does not cool off with time as advertised; and (4) the idea of a high surface temperature on Venus was published in the dominant astronomical journal of its time and with an essentially correct argument ten years before the publication of
PROBLEM IX. THE CRATERS AND MOUNTAINS OF VENUS
IN 1973 AN IMPORTANT aspect of the surface of Venus, verified by many later observations, was discovered by Dr. Richard Goldstein and associates, using the Goldstone radar observatory of the Jet Propulsion Laboratory. They found, from radar that penetrates Venus’ clouds and is reflected off its surface, that the planet is mountainous in places and cratered abundantly; perhaps, like parts of the Moon, saturation-cratered-i.e., so packed with craters that one crater overlaps the other. Because successive volcanic eruptions tend to use the same lava tube, saturation cratering is more characteristic of impact than of volcanic cratering mechanisms. This is not a conclusion predicted by Velikovsky, but that is not my point. These craters, like the craters in the lunar maria (plural for Latin