deduce that there are at most a few advanced extraterrestrial civilizations-either because statistically we are one of the first technical civilizations to have emerged or because it is the fate of all such civilizations to destroy themselves before they are much further along than we.

It seems to me that such despair is quite premature. All such arguments depend on our correctly surmising the intentions of beings far more advanced than ourselves, and when examined more closely I think these arguments reveal a range of interesting human conceits. Why do we expect that it will be easy to recognize the manifestations of very advanced civilizations? Is our situation not closer to that of members of an isolated society in the Amazon basin, say, who lack the tools to detect the powerful international radio and television traffic that is all around them? Also, there is a wide range of incompletely understood phenomena in astronomy. Might the modulation of pulsars or the energy source of quasars, for example, have a technological origin? Or perhaps there is a galactic ethic of noninterference with backward or emerging civilizations. Perhaps there is a waiting time before contact is considered appropriate, so as to give us a fair opportunity to destroy ourselves first, if we are so inclined. Perhaps all societies significantly more advanced than our own have achieved an effective personal immortality and lose the motivation for interstellar gallivanting, which may, for all we know, be a typical urge only of adolescent civilizations. Perhaps mature civilizations do not wish to pollute the cosmos. There is a very long list of such “perhapses,” few of which we are in a position to evaluate with any degree of assurance.

The question of extraterrestrial civilizations seems to me entirely open. Personally, I think it far more difficult to understand a universe in which we are the only technological civilization, or one of a very few, than to conceive of a cosmos brimming over with intelligent life. Many aspects of the problem are, fortunately, amenable to experimental verification. We can search for planets of other stars, seek simple forms of life on such nearby planets as Mars, and perform more extensive laboratory studies on the chemistry of the origin of life. We can investigate more deeply the evolution of organisms and societies. The problem cries out for a long-term, open-minded, systematic search, with nature as the only arbiter of what is or is not likely.

If there are a million technical civilizations in the Milky Way Galaxy, the average separation between civilizations is about 300 light-years. Since a light-year is the distance that light travels in one year (a little under 6 trillion miles), this implies that the one-way transit time for an interstellar communication from the nearest civilization is some 300 years. The time for a query and a response would be 600 years. This is the reason that interstellar dialogues are much less likely-particularly around the time of first contact-than interstellar monologues. At first sight, it seems remarkably selfless that a civilization might broadcast radio messages with no hope of knowing, at least in the immediate future, whether they have been received and what the response to them might be. But human beings often perform very similar actions as, for example, burying time capsules to be recovered by future generations, or even writing books, composing music and creating art intended for posterity. A civilization that had been aided by the receipt of such a message in its past might wish similarly to benefit other emerging technical societies.

For a radio search program to succeed, the Earth must be among the intended beneficiaries. If the transmitting civilization were only slightly more advanced than we are, it would possess ample radio power for interstellar communication-so much, perhaps, that the broadcasting could be delegated to relatively small groups of radio hobbyists and partisans of primitive civilizations. If an entire planetary government or an alliance of worlds carried out the project, the broadcasters could transmit to a very large number of stars, so large that a message is likely to be beamed our way, even though there may be no reason to pay special attention to our region of the sky.

It is easy to see that communication is possible, even without any previous agreement or contact between transmitting and receiving civilizations. There is no difficulty in envisioning an interstellar radio message that unambiguously arises from intelligent life. A modulated signal (beep, beep-beep, beep-beep-beep…) comprising the numbers 1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31-the first dozen prime numbers-could have only a biological origin. No prior agreement between civilizations and no precautions against Earth chauvinism are required to make this clear.

Such a message would be an announcement, or beacon signal, indicating the presence of an advanced civilization but communicating very little about its nature. The beacon signal might also note a particular frequency where the main message is to be found, or might indicate that the principal message can be found at higher time resolution at the frequency of the beacon signal. The communication of quite complex information is not very difficult, even for civilizations with extremely different biologies and social conventions. Arithmetical statements can be transmitted, some true and some false, each followed by an appropriate coded word (in dahs and dits, for example), which would transmit the ideas of true and false, concepts that many people might guess would be extremely difficult to communicate in such a context.

But by far the most promising method is to send pictures. A repeated message that is the product of two prime numbers is clearly to be decoded as a two-dimensional array, or raster-that is, a picture. The product of three prime numbers might be a three-dimensional still picture or one frame of a two-dimensional motion picture. As an example of such a message, consider an array of zeros and ones which could be long and short beeps or tones on two adjacent frequencies, or tones of different amplitudes, or even signals with different radio polarizations. In 1974 such a message was transmitted to space from the 305-meter antenna at the Arecibo Observatory in Puerto Rico, which Cornell University runs for the National Science Foundation. The occasion was a ceremony marking the resurfacing of the Arecibo dish, the largest radio/radar telescope on the planet Earth. The signal was sent to a collection of stars called M13, a globular cluster comprising about a million separate suns which happened to be overhead at the time of the ceremony. Since M13 is 24,000 light-years away, the message will take 24,000 years to arrive there. If any responsive creature is listening, it will be 48,000 years before we receive a reply. The Arecibo message was clearly intended not as a serious attempt at interstellar communication, but rather as an indication of the remarkable advances in terrestrial radio technology.

The decoded message says something like this: “Here is how we count from one to ten. Here are the atomic numbers of five chemical elements-hydrogen, carbon, nitrogen, oxygen and phosphorus-that we think are interesting or important. Here are some ways to put these atoms together: the molecules adenine, thymine, guanine and cytosine, and a chain composed of alternating sugars and phosphates. These molecular building blocks are in turn put together to form a long molecule of DNA comprising about four billion links in the chain. The molecule is a double helix. In some way this molecule is important for the clumsy-looking creature at the center of the message. That creature is 14 radio wavelengths, or about 176 centimeters, high. There are about four billion of these creatures on the third planet from our star. There are nine planets altogether-four little ones on the inside, four big ones toward the outside and one little one at the extremity. This message is brought to you courtesy of a radio telescope 2,430 wavelengths, or 306 meters, in diameter. Yours truly.”

With many similar pictorial messages, each consistent with and corroborating the others, it is very likely that almost unambiguous interstellar radio communication could be achieved even between two civilizations that have never met. Our immediate objective is not to send such messages because we are very young and backward; we wish to listen.

The detection of intelligent radio signals from the depths of space would approach in an experimental and scientifically rigorous manner many of the most profound questions that have concerned scientists and philosophers since prehistoric times. Such a signal would indicate that the origin of life is not an extraordinary, difficult or unlikely event. It would imply that, given billions of years for natural selection, simple forms of life evolve generally into complex and intelligent forms, as on Earth; and that such intelligent forms commonly produce an advanced technology, as has also occurred here. But it is not likely that the transmissions we receive will be from a society at our own level of technological advance. A society only a little more backward than ours will not have radio astronomy at all. The most likely case is that the message will be from a civilization far in our technological future. Thus, even before we decode such a message, we will have gained an invaluable piece of knowledge: that it is possible to avoid the dangers of the period through which we are now passing.

There are some who look on our global problems here on Earth-at our vast national antagonisms, our nuclear arsenals, our growing populations, the disparity between the poor and the affluent, shortages of food and resources, and our inadvertent alterations of the natural environment-and conclude that we live in a system that has suddenly become unstable, a system that is destined soon to collapse. There are others who believe that our problems are soluble, that humanity is still in its childhood, that one day soon we will grow up. The receipt of a single message from space would show that it is possible to live through such technological adolescence: the transmitting civilization, after all, has survived. Such knowledge, it seems to me, might be worth a great price.

Another likely consequence of an interstellar message is a strengthening of the bonds that join all human and

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату