Our schoolbooks glorify war and hide its horrors. They inculcate hatred in the veins of children. I would teach peace rather than war. I would inculcate love rather than hate.”

At age sixty-seven, nine years before his death in 1955, Einstein described his lifelong quest: “Out yonder there was this huge world, which exists independently of us human beings and which stands before us like a great, eternal riddle, at least partially accessible to our inspection and thinking. The contemplation of this world beckoned like a liberation… The road to this paradise was not so comfortable and alluring as the road to the religious paradise; but it has proved itself as trustworthy, and I have never regretted having chosen it.”

CHAPTER 4

IN PRAISE OF SCIENCE AND TECHNOLOGY

The cultivation of the mind is a kind of food

supplied for the soul of man.

MARCUS TULLIUS CICERO,

De Finibus Bonorum et Malorum,

Vol. 19 (45-44 B.C.)

To one, science is an exalted goddess;

to another it is a cow which provides him

with butter.

FRIEDRICH VON SCHILLER,

Xenien (1796)

IN THE MIDDLE of the nineteenth century, the largely self-educated British physicist Michael Faraday was visited by his monarch, Queen Victoria. Among Faraday’s many celebrated discoveries, some of obvious and immediate practical benefit, were more arcane findings in electricity and magnetism, then little more than laboratory curiosities. In the traditional dialogue between heads of state and heads of laboratories, the Queen asked Faraday of what use such studies were, to which he is said to have replied, “Madam, of what use is a baby?” Faraday had an idea that there might someday be something practical in electricity and magnetism.

In the same period the Scottish physicist James Clerk Maxwell set down four mathematical equations, based on the work of Faraday and his experimental predecessors, relating electrical charges and currents with electric and magnetic fields. The equations exhibited a curious lack of symmetry, and this bothered Maxwell. There was something unaesthetic about the equations as then known, and to improve the symmetry Maxwell proposed that one of the equations should have an additional term, which he called the displacement current. His argument was fundamentally intuitive; there was certainly no experimental evidence for such a current. Maxwell’s proposal had astonishing consequences. The corrected Maxwell equations implied the existence of electromagnetic radiation, encompassing gamma rays, X-rays, ultraviolet light, visible light, infrared and radio. They stimulated Einstein to discover Special Relativity. Faraday and Maxwell’s laboratory and theoretical work together have led, one century later, to a technical revolution on the planet Earth. Electric lights, telephones, phonographs, radio, television, refrigerated trains making fresh produce available far from the farm, cardiac pacemakers, hydroelectric power plants, automatic fire alarms and sprinkler systems, electric trolleys and subways, and the electronic computer are a few devices in the direct evolutionary line from the arcane laboratory puttering of Faraday and the aesthetic dissatisfaction of Maxwell, staring at some mathematical squiggles on a piece of paper. Many of the most practical applications of science have been made in this serendipitous and unpredictable way. No amount of money would have sufficed in Victoria’s day for the leading scientists in Britain to have simply sat down and invented, let us say, television. Few would argue that the net effect of these inventions was other than positive. I notice that even many young people who are profoundly disenchanted with Western technological civilization, often for good reason, still retain a passionate fondness for certain aspects of high technology-for example, high-fidelity electronic music systems.

Some of these inventions have fundamentally changed the character of our global society. Ease of communication has deprovincialized many parts of the world, but cultural diversity has been likewise diminished. The practical advantages of these inventions are recognized in virtually all human societies; it is remarkable how infrequently emerging nations are concerned with the negative effects of high technology (environmental pollution, for example); they have clearly decided that the benefits outweigh the risks. One of Lenin’s aphorisms was that socialism plus electrification equals communism. But there has been no more vigorous or inventive pursuit of high technology than in the West. The resulting rate of change has been so rapid that many of us find it difficult to keep up. There are many people alive today who were born before the first airplane and have lived to see Viking land on Mars, and Pioneer 10, the first interstellar spacecraft, be ejected from the solar system, or who were raised in a sexual code of Victorian severity and now find themselves immersed in substantial sexual freedom, brought about by the widespread availability of effective contraceptives. The rate of change has been disorienting for many, and it is easy to understand the nostalgic appeal of a return to an earlier and simpler existence.

But the standard of living and conditions of work for the great bulk of the population in, say, Victorian England, were degrading and demoralizing compared to industrial societies today, and the life-expectancy and infant- mortality statistics were appalling. Science and technology may be in part responsible for many of the problems that face us today-but largely because public understanding of them is desperately inadequate (technology is a tool, not a panacea), and because insufficient effort has been made to accommodate our society to the new technologies. Considering these facts, I find it remarkable that we have done as well as we have. Luddite alternatives can solve nothing. More than one billion people alive today owe the margin between barely adequate nutrition and starvation to high agricultural technology. Probably an equal number have survived, or avoided disfiguring, crippling or killing diseases because of high medical technology. Were high technology to be abandoned, these people would also be abandoned. Science and technology may be the cause of some of our problems, but they are certainly an essential element in any foreseeable solution to those same problems-both nationally and planetwide.

I do not think that science and technology have been pursued as effectively, with as much attention to their ultimate humane objectives and with as adequate a public understanding as, with a little greater effort, could have been accomplished. It has, for example, gradually dawned on us that human activities can have an adverse effect on not only the local but also the global environment. By accident a few research groups in atmospheric photochemistry discovered that halocarbon propellants from aerosol spray cans will reside for very long periods in the atmosphere, circulate to the stratosphere, partially destroy the ozone there, and let ultraviolet light from the sun leak down to the Earth’s surface. Increased skin cancer for whites was the most widely advertised consequence (blacks are neatly adapted to increased ultraviolet flux). But very little public attention has been given to the much more serious possibility that microorganisms, occupying the base of an elaborate food pyramid at the top of which is Homo sapiens, might also be destroyed by the increased ultraviolet light. Steps have finally, although reluctantly, been taken to ban halocarbons from spray cans (although no one seems to be worrying about the same molecules used in refrigerators) and as a result the immediate dangers are probably slight. What I find most worrisome about this incident is how accidental was the discovery that the problem existed at all. One group approached this problem because it had written the appropriate computer programs, but in quite a different context: they were concerned with the chemistry of the atmosphere of the planet Venus, which contains hydrochloric and hydrofluoric acids. The need for a broad and diverse set of research teams, working on a great variety of problems in pure science, is clearly required for our continued survival. But what other problems, even more severe, exist which we do not know about because no research group happens as yet to have stumbled on them? For each problem we have uncovered, such as the effect of halocarbons on the ozonosphere, might there not be another dozen lurking around the corner? It is therefore an astonishing fact that nowhere in the federal

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×