296 Hill and Gaddy use the term Siberian Curse to argue that Soviet planners shortchanged their country economically by seeking to develop its cold hinterlands. I am co-opting the term here to more broadly include biological factors as well. F. Hill and C. Gaddy, The Siberian Curse (Washington, D.C.: Brookings Institution Press, 2003), 303 pp.
297 This summary drawn from Chapter 2, “Arctic Climate: Past and Present,” of the Arctic Climate Impact Assessment (ACIA) (Cambridge, UK: Cambridge University Press, 2005), 1,042 pp.; and Working Group II Report, Chapter 15, “Polar Regions,” of the IPCC AR4 (2007). See also S. J. Dery, R. D. Brown, “Recent Northern Hemisphere Snow Cover Extent Trends and Implications for the Snow-Albedo Feedback,” Geophysical Research Letters 34, no. 22 (2007): L22504. Much of the observed warming is not caused by greenhouse forcing directly, but instead to atmospheric circulation changes, suggesting that the Arctic is just in the early stages of the human-induced greenhouse gas signature. M. C. Serreze, J. A. Francis, “The Arctic Amplification Debate,” Climatic Change 76 (2006): 241-264.
298 For example, a +8% increase in peak greenness north of 65° N latitude from 1982 to 1990; a +17% increase in northern Alaska from 1981 to 2001. R. Myneni et al., “Increased Plant Growth in the Northern Latitudes from 1982 to 1991,” Nature 386 (1997): 698-702; G. J. Jia, H. E. Epstein, D. A. Walker, “Greening of Arctic Alaska, 1981-2001,” Geophysical Research Letters 30, no. 20 (2003): 2067; also M. Sturm, C. Racine, K. Tape, “Climate Change: Increasing Shrub Abundance in the Arctic,” Nature 411 (2001): 546-547; I. Gamach, S. Payette, “Height Growth Response of Tree Line Black Spruce to Recent Climate Warming across the Forest-Tundra of Eastern Canada,” Journal of Ecology 92 (2004): 835-845.
299 Arctic-wide average net primary productivity is forecast to rise from 2.8 to 4.9 Pg C/year by the 2080s under the “optimistic” IPCC B2 scenario, Table 7.13, ACIA (2005).
300 This paragraph and others drawn from personal interviews and anecdotes collected 2006/2007 throughout Canada, Alaska, and Finland, including Fort Chipewyan, Fort McMurray, Cumberland House, Whitehorse, High Level, Hay River, Yellowknife, Churchill, Fairbanks, and Barrow. Also G. Beaugrand et al., “Reorganization of North Atlantic Marine Copepod Biodiversity and Climate,” Science 296 (2002): 1692-1694; A. L. Perry et al., “Climate Change and Distribution Shifts in Marine Fishes,” Science 308 (2005): 1912-1915; N. S. Morozov, “Changes in the Timing of Migration and Winter Records of the Common Buzzard (Buteo buteo) in the Central Part of European Russia: The Effect of Global Warming?” Zoologichesky Zhurnal 86, no. 11 (2007): 1336-1355; G. Jansson, A. Pehrson, “The Recent Expansion of the Brown Hare (Lepus europaeus) in Sweden with Possible Implications to the Mountain Hare (L. timidus),” European Journal of Wildlife Research 53 (2007): 125-130; N. H. Ogden, “Climate Change and the Potential for Range Expansion of the Lyme Disease Vector Ixodes scapularis in Canada,” International Journal for Parasitology 36, no. 1 (2006): 63-70; S. Sharma et al., “Will Northern Fish Populations Be in Hot Water Because of Climate Change?” Global Change Biology 13 (2007): 2052-2064; S. Jarema et al., “Variation in Abundance across a Species’ Range Predicts Climate Change Responses in the Range Interior Will Exceed Those at the Edge: A Case Study with North American Beaver,” Global Change Biology 15 (2009): 508-522.
301 Cartoons and children’s books that show penguins and polar bears coexisting together perpetuate a widespread myth about their geographic distribution. Polar bears are found only in the far northern hemisphere. Penguins are found only in the southern hemisphere. Unlike the Arctic, with its bears, foxes, and humans, there are no land-based predators in Antarctica. This is why penguins and elephant seals are fearless of humans whereas ringed seals are not.
302 These events happened in 2004. S. C. Amstrup et al., “Recent Observations of Intraspecific Predation and Cannibalism among Polar Bears in the Southern Beaufort Sea,” Polar Biology 29 (2006): 997-1002. Increasing polar bear interaction with human settlements is described by I. Stirling, Parkinson, “Possible Effects of Climate Warming on Selected Populations of Polar Bears (Ursus maritimus) in the Canadian Arctic,” Arctic 59, no. 3 (2006): 261-275; also E. V. Regehr et al., “Effects of Earlier Sea Ice Breakup on Survival and Population Size of Polar Bears in Western Hudson Bay,” Journal of Wildlife Management 71 (2007): 2673-2683. For more on projected future declines in polar bear sea-ice habitat, see G. M. Durner et al., “Predicting 21st-Century Polar Bear Habitat Distribution from Global Climate Models,” Ecological Monographs 79, no. 1 (2009): 25- 58.
303 S. C. Amstrup et al., Forecasting the Range-wide Status of Polar Bears at Selected Times in the 21st Century: Administrative Report to Support U.S. Fish and Wildlife Service Polar Bear Listing Decision (Reston, Va.: U.S. Department of the Interior/U.S. Geological Survey, 2007), 126 pp.
304 C. D. Thomas et al., “Extinction Risk from Climate Change,” Nature 427 (2004): 145-148. The IPCC AR4 similarly estimates a 20%-30% species extinction for a global temperature rise of 1.5°-2.5°C.
305 For example, since the early twentieth century the western United States has suffered a 73% loss in the coverage area of alpine tundra. H. F. Diaz et al., “Disappearing ‘Alpine Tundra’ Koppen Climatic Type in the Western United States,” Geophysical Research Letters 34, no. 18 (2007): L18707. Under the high-end A2 emissions scenario, 12%-39% and 10%-48% of the Earth’s terrestrial surface is projected to experience novel and disappearing climates by 2100 A.D.; corresponding projections for the low-end B1 scenario are 4%-20% and 4%-20%. J. W. Williams et al., “Projected Distributions of Novel and Disappearing Climates by 2100 A.D.,” Proceedings of the National Academy of Sciences 104, no. 14 (2007): 5738- 5742.
306 Note that I said least disturbed, not undisturbed. The myth of a pristine North is exposed in Chapter 7.
307 More precisely, up to 44% of all species of vascular plants and 35% of all species in four vertebrate groups. N. Myers et al., “Biodiversity Hotspots for Conservation Priorities,” Nature 403 (2000): 853-858, DOI:10.1038/35002501. Seven million is a conservative estimate and refers to eukaryotes, meaning species generally recognized as plants or animals but excluding things like bacteria.
308 Owing to increased forest disturbance from insect pests and wildfires, e.g., Gillett et al., “Detecting the Effect of Climate Change on Canadian Forest Fires,” Geophysical Research Letters 31 (2004): L18211; E. S. Kasischke, M. R. Turetsky, “Recent Changes in the Fire Regime across the North American Boreal Region—Spatial and Temporal Patterns of Burning across Canada and Alaska,” Geophysical Research Letters 33 (2006): L09703.
309 From personal interviews with Ron Brower of Barrow, Alaska, August 9, 2006; Mayor E. Sheutiapik of Iqualuit, Nunavut, August 5, 2007; Mayor E. Kavo and J. Meeko of Sanikiluaq, Nunavut, August 7, 2007.
310 Personal interview with Ron Brower, Barrow, Alaska, August 9, 2006.
311 Drawn from J. Painter, “Greenland Sees Bright Side of Warming,” BBC News, September 14, 2007; C. Woodward, “Global Warming Is a Boon for Farmers and Fishermen but a Hardship for Ice-Dependent Inuit,” Christian Science Monitor, October 1, 2007; and “Greenlandic Super Potatoes,” The Copenhagen Post, May 18, 2009.
312 Workshop on Conservation of Crop Genetic Resources in the Face of Climate Change, Bellagio, Italy, September 3-6, 2007.
313 More specifically South Asia wheat, Southeast Asia rice, and southern Africa corn. The editors of Science must have also been impressed, as the research appeared there five months later. D. B. Lobell, M. B. Burke et al., “Prioritizing Climate Change Adaptation Needs for Food Security in 2030,” Science 319 (2008): 607-610.
314 W. Schlenker, D. B. Lobell, “Robust negative impacts of climate change on African agriculture,” Environmental Research Letters 5 (2009), DOI:10.1088/1748-9326/5/1/014010.
315 D. S. Battisti, R. L. Naylor, “Historical Warnings of Future Food Insecurity with Unprecedented Seasonal Heat,” Science 323 (2009): 240-244.
316 The experiment assumed a doubling of atmospheric CO2. R. M. Adams et al., “Global Climate Change and U.S. Agriculture,” Nature 345 (1990): 219-224.