Из практики известно, что железо прочнее меди, а медь прочнее алюминия.

2. Кристаллизация и структура металлов и сплавов

Порядок расположения атомов – тип кристаллической решетки – природное свойство металла, форма кристаллов и их размеры зависят от процесса перехода металла из жидкого состояния в твердое. Процесс образования кристаллов при затвердевании металлов называется кристаллизацией. При кристаллизации металлов выделяется тепло, а при переходе металлов из твердого состояния в жидкое происходит поглощение тепла. Наблюдения с помощью измеряющих температуру проборов за процессом понижения температуры

при переходе металла из жидкого состояния в твердое позволили установить определенную закономерность. Сначала температура понижается равномерно. В начальный период образования кристаллов вследствие выделения скрытой теплоты при формировании кристаллической решетки падение температуры прекращается, и она остается неизменной до полного затвердения металла. После того как весь металл затвердеет, температура снова начинает понижаться. Температура, соответствующая горизонтальной площадке, называется критической. Кристаллизация металлов подобна кристаллизации солей, и этот процесс состоит из двух элементарных процессов, протекающих одновременно. Первый заключается в образовании центров кристаллизации, или зародышей кристаллов, второй – в росте кристаллов из этих центров.

Первый этап – появление зародышей кристаллов металла. Второй этап – по мере остывания металла к зародышам присоединяются все новые и новые атомы жидкого металла, которые группируются в определенном порядке один возле другого, образуя элементарные ячейки кристаллической решетки. Этот процесс продолжается до тех пор, пока не закончится кристаллизация. Причем кристаллы затвердевшего металла имеют неправильную и весьма разнообразную форму, что объясняется условиями кристаллизации.

В процессе кристаллизации увеличивается количество кристаллов – в 1 мм 3 может образоваться свыше 1000 кристаллов. Кристаллы, имеющие неправильную внешнюю форму, называются кристаллитами, или зернами. Чистые металлы относительно редко применяются в машиностроении и других отраслях хозяйственного комплекса. Более широко используются сплавы, состоящие из двух и более элементов (из двух металлов, например меди и цинка, или из металла и неметалла, например железа и углерода). Элементы, входящие в сплав, называются компонентами. В зависимости от расположения атомов в кристаллической решетке различают твердые растворы замещения и твердые растворы внедрения. В твердом растворе замещения атомы растворимого компонента замещаются атомами растворителя, а в твердом растворе внедрения атомы растворителя размещаются между атомами растворимого компонента в наиболее слабых местах элементов кристаллической решетки.

Сплавы, представляющие собой твердые растворы, отличаются ценными свойствами. Они тверже и прочнее, чем входящие в него компоненты.

Компоненты некоторых сплавов при кристаллизации могут входить в химическую связь, образуя химическое соединение. Химические соединения обладают очень высокой твердостью и хорошим электросопротивлением.

3. Диффузионные и бездиффузионные превращения

Под диффузией понимают перемещение атомов в кристаллическом теле на расстояния, превышающие средние межатомные расстояния данного металла. Если перемещения атомов не связаны с изменением концентрации в отдельных объемах, то такой процесс называется самодиффузией. Диффузия, сопровождающаяся изменением концентрации, называется гетеродиффузией. В тех случаях, когда гетеродиффу—зия сопровождается образованием новых фаз, что наиболее часто имеет место при химико—технической обработке, она называется реактивной диффузией.

В основе процесса диффузии лежит атомный механизм, при котором каждый атом совершает более или менее случайные блуждания. Диффузионные превращения в металлах происходят при различных химико—термических обработках – хромировании, цементации, алютировании (алюминирование) и т. д.

Хромирование обеспечивает повышенную жаростойкость стали до 800 °C, высокую коррозионную стойкость в таких средах, как пресная и морская вода, уксусная и фосфорная кислоты, и эрозионную стойкость при низкой и высокой температурах.

Хромирование сталей, содержащих более 0,3–0,4 % углерода, повышает также твердость и износостойкость. При хромировании диффузионный слой состоит из раствора хрома в? – железе, а содержание хрома на поверхности составляет 25–50 %.

При этом процессе в случае применения CrCl 2 протекает следующая реакция:

CrCl 2 + Fe > FeCl 2 + Cr.

При термической обработке стали наблюдаются бездиффузные, или аллотропические, превращения в процессе вторичной кристаллизации. В частности, при температуре +775 °C в стали, содержащей 0,6 % углерода, начинаются аллотропические превращения, т. е. выделение феррита из аустенита (твердого раствора углерода (до 2,14 %)) и других примесей в объеме железа.

Феррит – твердый раствор небольшого количества углерода (до 0,04 %) и других примесей в? – железе – мягкая, пластичная и недостаточно прочная структурная составляющая. Так как в феррите содержится ничтожное количество углерода, оставшийся аустенит будет постепенно, по мере выделения феррита, обогащаться углеродом. Когда концентрация углерода в оставшемся аустените достигнет 0,8 %, при температуре +727 °C сталь, содержащая 0,6 % углерода, будет иметь в своем составе феррит и аустенит, а при температурах ниже +727 °C – феррит и перлит, причем структура феррит – перлит сохранится без значительных изменений и при дальнейшем охлаждении стали вплоть до комнатной температуры. Аналогичные превращения характерны для всех доэвтек—тоидных сталей (содержащих менее 0,8 % углерода). Разница будет лишь в температурах начала выделения феррита. Причем, если сталь содержит 0,8 % углерода, ее вторичная кристаллизация будет протекать при постоянной температуре (+727 °C) и сопровождаться только одним процессом – образованием перлита. Это объясняется тем, что в данном случае содержание углерода в стали соответствует эвтектоидному составу – механической смеси кристаллов, выделяющихся из жидкого сплава одновременно. При этом создается мелкозернистая структура сплава.

4. Классификация сплавов. Железо и его сплавы

Сталь и чугун – основные материалы в машиностроении. Они составляют 95 % всех используемых в технике сплавов.

Сталь – это сплав железа с углеродом и другими элементами, содержащий до 2,14 % углерода. Углерод – важнейшая примесь стали. От его содержания зависят прочность, твердость и пластичность стали. Кроме железа и углерода, в состав стали входят кремний, марганец, сера и фосфор. Эти примеси попадают в сталь в процессе выплавки и являются ее неизбежными спутниками.

Чугун – сплав на железной основе. Отличие чугуна от стали заключается в более

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×