резанием, свариваемость и др. Например, если содержание хрома или марганца превышает 1 %, увеличивается порог хладноломкости стали (порог хладноломкости, или критическая температура хрупкости, – это температура перехода металла от вязкого разрушения к хрупкому, и наоборот).
2. Теория термической обработки
Задача термической обработки – путем нагрева и охлаждения вызвать необратимое изменение свойств вследствие необратимого изменения структуры. Любой вид термической обработки обычно изображается в координатах температура – время.
Собственно термическая обработка не предусматривает какого—либо иного воздействия, кроме температурного.
При термической обработке стали происходят следующие основные превращения:
1) превращение перлита в аустенит, происходящее при нагреве выше точки
Fea + Fe3 C > Fev (C) или П – А;

2) превращение аустенита в перлит, происходящее при медленном охлаждении из? – области:
Fev (C) > Fea (C) + Fe 3 C или А > П;
3) превращение аустенита в мартенсит, происходящее при быстром охлаждении из? – области:
Fev (C) > Fea (C) или А > М;
4) превращение мартенсита при нагреве (отпуске):
Fea (C) > Fea + Fe3 C или М > П.
Описание структурных превращений, происходящих в стали при термической обработке, является одновременно и теорией термической обработки.
Превращение перлита в аустенит – необходимый этап для многих видов термической обработки.

Сталь с содержанием (А) углерода 0,8 %. Превращение перлита в аустенит реализуется при нагреве выше значения Ас 1, причем с повышением температуры оно непрерывно ускоряется. При непрерывном нагреве с различной скоростью лучи v1 и v2 превращения начинаются в точке а' (а' ) и заканчиваются в точке
В интервале между точками
При исходной перлитной структуре образование аустени—та идет из многих центров, и тотчас после окончания превращения перлита в аустенит образуется мелкозернистый аус—тенит.
Дальнейший нагрев ведет к росту зерна аустенита, осуществляемого по одному из следующих механизмов: путем слияния мелких зерен в крупные, путем миграции границ зерен. Процесс слияния происходит при более низкой температуре (от +900 до +1000 °C), чем миграция (> +1100 °C), но приводит к образованию отдельных более крупных зерен, т. е к разнозернистости.
При термической обработке механические свойства стали могут изменяться в очень широких пределах. Так, например, твердость стали, содержащей 0,8 % углерода, после такой обработки возрастает до 160–600 МВ.
3. Диаграмма изотермического превращения аустенита
На рис. 10 представлена диаграмма изотермического превращения аустенита стали, содержащей 0,8 % углерода.
По оси ординат откладывается температура. По оси абсцисс – время.

Для изучения изотермического превращения аустенита небольшие образцы стали нагревают до температур, соответствующих существованию стабильного аустенита, т. е. выше критической точки, а затем быстро охлаждают, например до +700, +600, +500, +400, +300 °C и т. д., и выдерживают при
этих температурах до полного распада аустенита. Изотермическое превращение аустенита эвтектоидной стали происходит в интервале температур от +727 до +250 °C (температуры начала мартенситного превращения – Мн). На диаграмме – две С—образные кривые. Кривая I указывает время начала превращения, кривая II – время конца превращения переохлажденного аустенита. Период до начала распада аустенита называют инкубационным. При +700 °C превращение аусте—нита начинается в точке