величине от массы Солнца:

масса?период2 = средний радиус3.

См. также статьи «Ньютон», «Орбиты планет».

ЗАКОН ТЯГОТЕНИЯ НЬЮТОНА

До того как Ньютон сформулировал всеобщий закон тяготения, считалось, что объекты обладают свойством тяжести, которое тянет вниз, и летучести, которое толкает их вверх. Ньютон развеял концепцию летучести и показал, что между двумя любыми объектами существует сила гравитационного притяжения. Он объяснил движение объекта, падающего на Землю, сказав, что между объектом и Землей существует сила взаимного тяготения. Ньютон воспользовался той же идеей для объяснения движения Луны вокруг Земли и планет вокруг Солнца. Если бы сила тяготения между Солнцем и планетами внезапно перестала существовать, каждая планета продолжала бы поступательные движения по прямой линии, расположенной по касательной к ее орбите. Сила гравитационного притяжения между Солнцем и планетами заставляет планеты обращаться вокруг Солнца.

Ньютон считал, что сила тяготения между двумя объектами, представляемыми в виде точек, пропорциональна массе каждого объекта и обратной величине квадрата расстояния между двумя объектами. Для двух таких точечных объектов с массой m1 и m2 при расстоянии r он выявил следующее уравнение для силы тяжести F между двумя массами.

где G — коэффициент пропорциональности, который он назвал гравитационной постоянной.

Выбор r2 в уравнении Ньютона вместо r или r3 или какой-либо другой степени r был обусловлен его предыдущими открытиями законов движения. Он показал, что тело, которое находится в постоянном круговом движении, всегда испытывает воздействие силы ускорения, направленной к центру круга и равной квадрату скорости, деленному на радиус. Связав это уравнение со своей формулой для силы тяготения, Ньютон доказал третий закон Кеплера для движения планет. Любая другая степень r в его формуле не могла бы доказать третий закон Кеплера. Следующим шагом Ньютона была попытка распространить свои идеи за пределы точечных объектов. Это оказалось очень трудно, и в конце концов после многих лет исследований он доказал, что закон тяготения можно применить к любым двум объектам при условии, что расстояние в его уравнении является расстоянием между двумя центрами тяжести.

См. также статьи «Ньютон», «Законы Кеплера».

ЗАКОН ХАББЛА

Эдвин Хаббл пользовался телескопом обсерватории Маунт-Уилсон с рефлектором диаметром 2,5 метра. Телескоп был установлен на горе Уилсон в Калифорнии, и Хаббл использовал его для оценки расстояний до двух десятков галактик с известным красным смещением, расположенных в пределах 2 млн. парсеков от Галактики Млечный Путь (1 парсек = 3,26 светового года). Результаты его исследований, опубликованные в 1929 году, показали, что с расстоянием красное смещение увеличивается. При нанесении результатов на диаграмму, связывающую красное смещение и расстояние, стало ясно, что скорость удаления галактики пропорциональна расстоянию до нее: v = Hd. Это взаимоотношение называется законом Хаббла. Величина Н в этом отношении называется постоянной Хаббла.

Итак, скорость отдаления v = Hd, где d — расстояние до галактики.

Мильтон Хьюмасон произвел дальнейшие измерения с использованием телескопа обсерватории. К 1935 году Хаббл и Хьюмасон опубликовали результаты наблюдений для более чем 140 галактик, расположенных на расстоянии более 300 млн. парсеков и отдаляющихся со скоростями свыше 40 000 км/с. Эти результаты подтверждали первоначальное открытие Хаббла. Ученые оценили величину постоянной Хаббла в 160 км/с на миллион световых лет расстояния. Дальнейшие измерения с использованием телескопов большей мощности и более современных детекторов снизили величину постоянной Хаббла до ее нынешнего значения — около 20 км/с на миллион световых лет.

Закон Хаббла является экспериментальным законом, применимым в ограниченном масштабе измерений. Возможные объяснения этого закона были предметом бурной дискуссии в течение полувека после открытия. Теперь принято считать, что закон Хаббла является следствием расширения Вселенной после первичного взрыва, который произошел в период между 10 и 15 млрд. лет назад. Этот взрыв, известный как Большой Взрыв, привел к созданию пространственно-временного континиума. Величина Н имеет очень важное значение, поскольку она используется для оценки возраста Вселенной.

См. также статьи «Большой Взрыв», «Расширение Вселенной», «Красное смещение».

ЗВЕЗДНАЯ ВЕЛИЧИНА

Считается, что наша нынешняя система классификации звезд по их блеску была создана во II веке до нашей эры Гиппархом, который разделил звезды на 6 категорий согласно их яркости.

Ярчайшие звезды назывались звездами первой величины, а самые тусклые, едва видимые невооруженным глазом, назывались звездами шестой величины. В XIX веке астрономы измерили интенсивность светового потока для звезд разной величины и перевели шкалу звездной величины на научную основу; теперь различие в 5 звездных величин соответствовало стократному увеличению количества света. Таким образом, возрастание на одну звездную величину соответствует увеличению яркости в 2,512 раза, следовательно, отношение блеска звезд первой звездной величины к звездам шестой величины составляет 2,512?2,512?2,512?2,512 x 2,512 = 100. Классификация от первой до шестой величины была продолжена в оба конца шкалы, так что звездам, видимым лишь с помощью телескопа, была присвоена звездная величина более шестой, а очень ярким звездам были присвоены значения от 1 до 0 и менее О.[5]

Для сравнения истинной светимости различных звезд необходимо вычислить звездную величину, которую имела бы каждая звезда, если бы она находилась на одинаковом расстоянии от Солнечной системы. Для удобства было выбрано стандартное расстояние в 10 парсеков. Величина звезды, наблюдаемой на этом расстоянии, называется абсолютной звездной величиной (М).

Абсолютную звездную величину можно вычислить по видимой звездной величине. Расчеты основаны на принципе, что интенсивность света от точечного источника на определенном расстоянии меняется в отношении обратно пропорциональном квадрату расстояния. Этот принцип подразумевает, что интенсивность света меняется в соотношении (d/10)2 при движении от расстояния d до 10 парсеков от звезды. Если Dm представляет соответствующую разницу звездной величины, то 100?m/5 = (d/10)2 Пользуясь шкалой десятичных логарифмов, получаем уравнение ?m = 5 log d — 5; следовательно, М = т + 5–5log d (где 5 — абсолютная величина Солнца).

См. также статью «Светимость».

ЗВЕЗДНОЕ И СОЛНЕЧНОЕ ВРЕМЯ

Ход нашей повседневной жизни измеряется солнечным временем. Одни солнечные сутки — это

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×