AAA, EAE, AII, EIO.

Помимо общих правил существуют специальные правила фигур.

Правила 1-й фигуры:

1. Большая посылка – общее суждение.

2. Меньшая посылка – утвердительное суждение. Первая фигура – наиболее типичная форма дедуктивного умозаключения. Из общего положения, выражающего нередко закон науки, правовую норму, делается вывод об отдельном факте, единичном случае, конкретном лице. Широко применяется эта фигура в судебной практике. Юридическая оценка (квалификация) правовых явлений, применение нормы права к отдельному случаю, назначение наказания за преступление, совершенное конкретным лицом, и другие судебные решения принимают логическую форму 1-й фигуры силлогизма.

46. ВТОРАЯ И ТРЕТЬЯ ФИГУРЫ КАТЕГОРИЧЕСКОГО СИЛЛОГИЗМА, ИХ ПРАВИЛА, МОДУСЫ И РОЛЬ В ПОЗНАНИИ

Во второй фигуре – место предиката в обеих посылках.

Разновидности силлогизма, различающиеся количественными и качественными характеристиками посылок, называются модусами простого категорического силлогизма. Общее количество вариантов в четырех фигурах 64 модуса, но правильными, т. е. соответствующими всем правилам, являются только 19 из них по второй фигуре: EAE, AEE, EIO, AOO.

Помимо общих правил существуют специальные правила фигур.

Правила 2-й фигуры:

1. Большая посылка – общее суждение.

2. Одна из посылок – отрицательное суждение.

2-я фигура применяется, когда необходимо показать, что отдельный случай (конкретное лицо, факт, явление) не может быть подведен под общее положение. Этот случай исключается из числа предметов, о которых сказано в большей посылке. В судебной практике 2-я фигура используется для заключений об отсутствии состава преступления в данном конкретном случае, для опровержения положений, противоречащих тому, о чем говорится в посылке, выражающей общее положение.

В третьей фигуре – место субъекта в обеих посылках.

Посылками силлогизма могут быть суждения, различные по качеству и количеству: общеутвердительные (А), общеотрицательные (Е), частноутвердительные (/) и частноотрицательные (О).

По третьей фигуре правильными являются следующие модусы: AAI, IAI, AII, EAO, OAO, EIO.

Правила 3-й фигуры:

1. Меньшая посылка – утвердительное суждение.

2. Заключение – частное суждение.

Давая только частные заключения, 3-я фигура применяется чаще всего для установления частичной совместимости признаков, относящихся к одному предмету. В практике рассуждения 3-я фигура применяется сравнительно редко.

47. ЧИСТО УСЛОВНОЕ УМОЗАКЛЮЧЕНИЕ

Чисто условным называется умозаключение, обе посылки которого являются условными суждениями. Напр.:

Если изобретение создано совместным творческим трудом нескольких граждан (р), все они признаются соавторами изобретения (q). Если они признаются соавторами изобретения (r), то порядок пользования правами на изобретение, созданное в соавторстве, определяется соглашением между соавторами (r). Если изобретение создано совместным творческим трудом нескольких граждан (р), то порядок пользования правами на изобретение, созданное в соавторстве, определяется соглашением между соавторами (r).

В приведенном примере обе посылки – условные суждения, причем следствие первой посылки является основанием второй (q), из которого, в свою очередь, вытекает некоторое следствие (r). Общая часть двух посылок (q) позволяет связать основание первой (р) и следствие второй (r). Поэтому заключение также выражается в форме условного суждения.

Схема чисто условного умозаключения:

(p > q) ? (q > r),

(Р > r).

Вывод в чисто условном умозаключении основывается на правиле: следствие следствия есть следствие основания.

Умозаключение, в котором заключение получается из двух условных посылок, относится к простым.

Однако заключение может следовать из большего числа посылок, которые образуют цепь условных суждений. Такие умозаключения называются сложными.

48. УСЛОВНО-КАТЕГОРИЧЕСКОЕ УМОЗАКЛЮЧЕНИЕ

Условно-категорическим называется умозаключение, в котором одна из посылок условное, а другая посылка и заключение категорические суждения.

Это умозаключение имеет два правильных модуса: утверждающий и отрицающий.

1. В утверждающем модусе (modus ponens) посылка, выраженная категорическим суждением, утверждает истинность основания условной посылки, а заключение утверждает истинность следствия; рассуждение направлено от утверждения истинности основания к утверждению истинности следствия. Напр.:

Если иск предъявлен недееспособным лицом (р), то суд оставляет иск без рассмотрения (q).

Иск предъявлен недееспособным лицом (р). Суд оставляет иск без рассмотрения (q).

Первая посылка – условное суждение, выражающее связь основания (р) и следствия (q). Вторая посылка – категорическое суждение, в котором утверждается истинность основания (р): иск предъявлен недееспособным лицом. Признав истинность основания (р), мы признаем истинность следствия (q): суд оставляет иск без рассмотрения.

Утверждающий модус дает достоверные выводы. Он имеет схему:

2. В отрицающем модусе (modus tollens) посылка, выраженная категорическим суждением, отрицает

истинность следствия условной посылки, а заключение отрицает истинность основания. Рассуждение направлено от отрицания истинности следствия к отрицанию истинности основания. Напр.: Если иск предъявлен недееспособным лицом (р), то суд оставляет иск без рассмотрения (q). Суд не оставил иск без рассмотрения (? q). Неверно, что иск предъявлен недееспособным лицом (?р). Схема отрицающего модуса:

Нетрудно установить, что возможны еще две разновидности условно-категорического силлогизма: от отрицания истинности основания к отрицанию истинности следствия и от утверждения истинности следствия к утверждению истинности основания.

Однако заключение по этим модусам не будет достоверным. Таким образом, из четырех модусов условно-категорического умозаключения, исчерпывающих все возможные комбинации посылок, достоверные заключения дают два: утверждающий и отрицающий. Они выражают законы логики и называются правильными модусами условно-категорического умозаключения. Эти модусы подчиняются правилу: утверждение основания ведет к утверждению следствия и отрицание следствия – к отрицанию основания. Два других модуса достоверных заключений не дают. Они называются неправильными модусами и подчиняются правилу: отрицание основания не ведет с необходимостью к отрицанию следствия и утверждение следствия не ведет с

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату