Отметим, что мы описали деструктор виртуальным, чтобы обеспечить полиморфное поведение при уничтожении объектов класса. Далее объявим все операторы:
virtual Queue<Item>& operator=(const Queue<Item>&); virtual int operator== (const Queue<Item>&) const; int operator!=(const Queue<Item>&) const;
Мы определили оператор присваивания (operator==) и оператор сравнения (operator==) как виртуальные для того, чтобы обеспечить безопасность типов. Переопределение этих операторов входит в обязанности подклассов. В них будут использоваться функции, аргументом которых является объект собственного специализированного класса. В этом смысле подклассы имеют то преимущество, что они знают представление своих экземпляров и могут обеспечить очень эффективную реализацию. Когда конкретный подкласс очереди неизвестен (например, если мы передаем объект по ссылке на его базовый класс), вызывается оператор базового класса, использующий может быть менее эффективные, но более универсальные алгоритмы. Эта идиома имеет побочный эффект: возможность работы одной и той же функции с очередями, имеющими различную внутреннюю реализацию, без нарушения типизации.
Если мы хотим ограничить доступ к копированию, присваиванию или сравнению некоторых объектов, нам надо объявить эти операторы защищенными или закрытыми.
Определим теперь модификаторы, позволяющие менять состояние объекта:
virtual void clear() = 0; virtual void append(const Item&) = 0; virtual void pop() =0; virtual void remove (unsigned int at) = 0;
Данные операции объявлены как чисто виртуальные, а это значит, что их описание является обязанностью подклассов. Наличие чисто виртуальных функций делает класс Queue абстрактным.
Спецификатор const указывает (компилятор может это проверить) на использование функций-селекторов, то есть функций, предназначенных исключительно для получения информации о состоянии объекта, но не для изменения состояния:
virtual unsigned int length() const = 0; virtual int isEmpty() const = 0; virtual const Item& front() const =0; virtual int location(const Item&) const = 0;
Эти операции тоже определены как чисто виртуальные, потому что класс Queue не обладает достаточной информацией для их полного описания.
Защищенная часть каждого класса начинается с описания тех элементов, которые формируют основу его структуры и должны быть доступны подклассам [Всюду, где веские причины не заставляют нас действовать по-другому, мы объявляем элементы класса закрытыми. Здесь, однако, существует веская причина объявить эти фрагменты защищенными: доступ к ним потребуется подклассам]. Абстрактный класс Queue, в. отличие от своих подклассов (см. ниже), подобных элементов не имеет.
Продолжит защищенную часть базового класса определение служебных функций, которые будут полиморфно реализованы в конкретных подклассах. Класс Queue содержит довольно типичный список таких функций:
virtual void purge() = 0; virtual void add(const Item&) = 0; virtual unsigned int cardinality() const = 0; virtual const Item& itemAt (unsigned int) const = 0; virtual void lock(); virtual void unlock ();
Причины, по которым мы ввели именно эти функции, будут рассмотрены в следующем разделе.
И, наконец, определим закрытую часть, обычно содержащую объявления о классах-друзьях и те элементы, которые мы хотим сделать недоступными даже для подклассов. Класс Queue содержит только декларации о друзьях:
friend class QueueActiveIterator<Item>; friend class QueuePassiveIterator<Item>;
Как мы увидим в дальнейшем, эти объявления друзей понадобятся для поддержки идиом итератора.
Семантика времени и памяти
Из пяти основных принципов строения библиотеки базовых классов, возможно, наиболее важен механизм, обеспечивающий клиента альтернативной простанственно-временной семантикой внутри каждого семейства классов.
Рассмотрим тот спектр требований, который должен учитываться при разработке библиотеки общего назначения. На рабочей станции, обладающей большим виртуальным адресным пространством, пользователь скорее всего будет расточать память ради более высокого быстродействия. С другой стороны, в некоторых встроенных системах, таких, как спутник или автомобильный мотор, ресурсы памяти часто ограничены, и разработчик вынужден выбирать в качестве рабочих те абстракции, которые используют меньше памяти (например, выделяя место под данные в стеке, а не в 'куче'). Ранее мы различили эти две возможности как ограниченную и неограниченную формы соответственно.
Неограниченные формы применимы в тех случаях, когда размер структуры не может быть предсказан, а выделение и утилизация памяти из кучи не приводит ни к потере времени, ни к снижению надежности (как это бывает в некоторых приложениях, критичных по времени) [Некоторые требования к системе могут запретить использование динамически распределяемой памяти. Рассмотрим сердечный импульсный регулятор и возможные фатальные результаты, которые может вызвать сборщик мусора, 'проснувшийся' в неподходящий момент. Есть системы с длительным рабочим циклом: в них даже минимальная утечка памяти может дать серьезный кумулятивный эффект; вынужденная перезагрузка системы из-за недостатка памяти может привести к неприемлемой потере функциональности]. Ограниченные формы лучше подходят для работы с небольшими структурами, размер которых достаточно хорошо предсказуем. Учтем также, что динамическое выделение памяти менее терпимо к ошибкам программиста.
Таким образом, все структуры данной библиотеки должны присутствовать в альтернативных вариантах; поэтому нам придется создать два низкоуровневых класса поддержки, Unbounded (неограниченный) и Bounded (ограниченный). Задачей класса unbounded является поддержка быстро работающего связного списка, элементы которого размещаются в памяти, выделенной из 'кучи'. Это представление эффективно по скорости, но не по памяти, так как каждый элемент списка должен, кроме своего значения, дополнительно содержать указатель на следующий элемент того же списка. Задача класса Bounded состоит в организации структур на базе массива, что эффективно с точки зрения памяти, но добиться большой производительности трудно, так как, например, при добавлении элемента в середину списка приходится последовательно копировать все последующие (или предыдущие) элементы массива.
Как видно из рис. 9-4, для включения этих классов нижнего уровня в иерархию основных абстракций мы используем агрегацию. Более точно, диаграмма показывает, что мы используем физическое включение по значению с защищенным Доступом, которое означает, что это низкоуровневое представление доступно только подклассам и друзьям. На раннем этапе проектирования мы хотели воспользоваться примесями и сделать unbounded и Bounded защищенными суперклассами.
Мы в конце концов отказались от такого варианта, так как он достаточно труден для понимания, и к тому же нарушает лакмусов принцип наследования: BoundedQueue, по крайней мере, с точки зрения типа данных, не является частным случаем класса Bounded.
Отметим также, что работа с двумя формами требует присутствия второго аргумента в их шаблоне. Для ограниченной формы - это беззнаковое целое число Size, обозначающее статический размер объекта. Для неограниченной формы - это класс StorageManager, ответственный за политику размещения в памяти. Мы рассмотрим его работу в следующем разделе.
Протокол обоих классов поддержки должен быть, с одной стороны, достаточным для обеспечения работы конкретных подклассов, а с другой стороны, универсальным, чтобы гарантировать выполнение ответственности всех других структур в библиотеке. В целях компактности и быстродействия мы не включили в описание классов Unbounded и Bounded ни одной виртуальной функции. По этой причине мы не можем объединить их одним суперклассом, несмотря на то,