SUPPLIERS.COMPANY, PRICES.PRICE FROM PRODUCTS, SUPPLIERS, PRICES WHERE PRODUCTS.PRODUCTID = PRICES.PRODUCTID AND SUPPLIERS.SUPPLIERID = PRICES.SUPPLIERID

Использование представлений предпочтительнее, так как оно позволяет создавать различные представления для различных клиентов системы. Поскольку представления могут существенно отличаться от низкоуровневых связей в базе данных, гарантируется некоторая степень независимости данных. Права доступа пользователей к информации можно определять на основе виртуальных, а не реальных таблиц, позволяя таким образом записывать безопасные транзакции. Представления несколько отличаются от таблиц, хотя бы тем, что связи в представлениях не могут быть обновлены напрямую.

В нашей системе SQL-запросы будут играть роль абстракций низкого уровня. Пользователи вряд ли будут разбираться в SQL, ведь этот язык не является частью предметной области. Мы будем использовать SQL при реализации программы. Составлять свои SQL-предложения смогут только достаточно искушенные в программировании разработчики инструментальных средств нашей системы. От простых смертных, работающих с системой каждый день, язык запросов будет скрыт.

Рассмотрим следующую задачу: получив заказ, мы хотим определить имя сделавшей его компании. С точки зрения программиста SQL, это нетрудная задача. Однако, в нашем случае, когда основное программирование выполняется на C++, мы предпочли бы использовать следующее выражение:

currentOrder.customer().name()

С точки зрения объектно-ориентированного подхода это выражение вызывает селектор customer, возвращающий ссылку на клиента, а затем - селектор name, возвращающий имя клиента. На самом деле данное выражение вычисляется следующим запросом:

SELECT NAME FROM ORDERS, CUSTOMERS WHERE ORDERS.CUSTOMERID = CURRENTORDER.CUSTOMERID AND ORDERS.CUSTOMERID = CUSTOMERS.CUSTOMERID

Спрятав от клиента детали реализации данного вызова, мы скрыли от него все неприятные особенности работы с SQL.

Отображение объектно-ориентированного представления мира в реляционное концептуально ясно, но обычно требует довольно утомительной проработки деталей [Большая часть преимуществ объектно- ориентированных баз данных заключается как раз в том, что в них эти утомительные детали скрыты от разработчика. Отображение классов в таблицы достаточно легко алгоритмизуемо, поэтому существует альтернатива ООСУБД: инструментальные средства, которые автоматически преобразуют определения классов C++ в реляционную схему и SQL-код. Тогда, например, если приложение запрашивает атрибут данного объекта, сгенерированный код создает необходимые SQL-предложения для стандартной реляционной базы данных, получает требуемые данные и доставляет их клиенту в форме, согласованной с интерфейсом C++]. По замечанию Румбаха, 'Соединение объектной модели с реляционной базой данных - в целом довольно простая задача, за исключением вопросов, связанных с обобщением' [16]. Румбах предлагает также некоторые правила, которые следует учитывать при отображении классов и ассоциаций (включая агрегацию) на таблицы:

• Каждый класс отображается в одну или несколько таблиц.

• Каждое отношение 'многие ко многим' отображается в отдельную таблицу.

• Каждое отношение 'один ко многим' отображается в отдельную таблицу или соотносится с внешним ключом [17].

Далее он предлагает три альтернативных варианта отображения иерархии наследования в таблицы:

• Суперкласс и каждый его подкласс отображаются в таблицу.

• Атрибуты суперкласса реплицируются в каждой таблице (и каждый подкласс отображается в отдельную таблицу).

• Атрибуты всех подклассов переносятся на уровень суперкласса (таким образом мы имеем одну таблицу для всей иерархии наследования) [18].

Нет ничего удивительного в том, что существуют определенные ограничения по использованию SQL в низкоуровневой реализации [Недавно был предложен новый стандарт - SQL3, который содержит объектно- ориентированные расширения. Они существенно уменьшают семантические различия между объектно- ориентированным и реляционным взглядом на мир и устраняют многие другие ограничения SQL]. В частности, этот язык поддерживает ограниченный набор типов данных, а именно, символы, строки фиксированной длины, целые числа и вещественные числа с фиксированной и плавающей точкой. Отдельные реализации иногда умеют работать и с другими типами данных; однако представление информации в виде графических элементов или строк произвольной длины напрямую не поддерживается.

Анализ схем данных

Дэйт задается следующим вопросом: 'Пусть дан набор данных, которые надо расположить в базе данных. Как определить подходящую логическую структуру для этих данных? Другими словами, как определить связи и атрибуты? Это и есть задача проектирования базы данных' [19]. Оказывается, что идентификация ключевых абстракций базы данных во многом напоминает процесс идентификации классов и объектов. По этой причине мы начнем разработку системы складского учета сразу с объектно-ориентированного анализа, в процессе которого будет формироваться структура базы данных, а не будем сперва браться за создание схемы базы данных, и затем выводить из нее объектную модель.

Начнем с уже перечисленного нами списка основных абстракций. Применив к нему правила Румбаха, мы получим следующие таблицы базы данных (сначала перечислим те из них, которые соответствуют ролям групп, принимающих участие в работе системы):

• CustomerTable

• SupplierTable

• OrderAgentTable

• AccountantTable

• ShippingAgentTable

• StockPersonTable

• RecetvingAgentTable

• FlannelTable

Затем следуют таблицы, отражающие классификацию продуктов и их наличие на складе:

• ProductTable

• InventoryTable

И, наконец, мы вводим таблицы для документопотока:

• OrderTable

• PurchaseOrderTable

• InvoiceTable

• PackingOrderTable

• StockOrderTable

• ShippingLabelTable

Мы не создавали таблиц для классов Report и Transaction, - результаты анализа подсказывают, что объекты этих классов не нуждаются в хранении.

На следующем этапе анализа можно в деталях определить состав атрибутов всех перечисленных таблиц. Наверно, нет смысла обсуждать на страницах этой книги данные вопросы; мы уже останавливались на наиболее интересных свойствах этих абстракции (см. рис. 10-4), а оставшиеся атрибуты дают мало нового с точки зрения архитектуры системы.

10.2. Проектирование

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату