более ему доверять. В случае нарушения какого-либо условия возбуждается исключительная ситуация. Как мы увидим далее, некоторые языки имеют средства для работы с исключительными ситуациями: объекты могут возбуждать исключения, чтобы запретить дальнейшую обработку и предупредить о проблеме другие объекты, которые в свою очередь могут принять на себя перехват исключения и справиться с проблемой.
Заметим, что понятия
Все абстракции обладают как статическими, так и динамическими свойствами. Например, файл как объект требует определенного объема памяти на конкретном устройстве, имеет имя и содержание. Эти атрибуты являются статическими свойствами. Конкретные же значения каждого из перечисленных свойств динамичны и изменяются в процессе использования объекта: файл можно увеличить или уменьшить, изменить его имя и содержимое. В процедурном стиле программирования действия, изменяющие динамические характеристики объектов, составляют суть программы. Любые события связаны с вызовом подпрограмм и с выполнением операторов. Стиль программирования, ориентированный на правила, характеризуется тем, что под влиянием определенных условий активизируются определенные правила, которые в свою очередь вызывают другие правила, и т.д. Объектно-ориентированный стиль программирования связан с воздействием на объекты (в терминах Smalltalk с
Примеры абстракций. Для иллюстрации сказанного выше приведем несколько примеров. В данном случае мы сконцентрируем внимание не столько на выделении абстракций для конкретной задачи (это подробно рассмотрено в главе 4), сколько на способе выражения абстракций.
В тепличном хозяйстве, использующем гидропонику, растения выращиваются на питательном растворе без песка, гравия или другой почвы. Управление режимом работы парниковой установки - очень ответственное дело, зависящее как от вида выращиваемых культур, так и от стадии выращивания. Нужно контролировать целый ряд факторов: температуру, влажность, освещение, кислотность (показатель рН) и концентрацию питательных веществ. В больших хозяйствах для решения этой задачи часто используют автоматические системы, которые контролируют и регулируют указанные факторы. Попросту говоря, цель автоматизации состоит здесь в том, чтобы при минимальном вмешательстве человека добиться соблюдения режима выращивания.
Одна из ключевых абстракций в такой задаче - датчик. Известно несколько разновидностей датчиков. Все, что влияет на урожай, должно быть измерено, так что мы должны иметь датчики температуры воды и воздуха, влажности, рН, освещения и концентрации питательных веществ. С внешней точки зрения датчик температуры - это объект, который способен измерять температуру там, где он расположен. Что такое температура? Это числовой параметр, имеющий ограниченный диапазон значений и определенную точность, означающий число градусов по Фаренгейту, Цельсию или Кельвину. Что такое местоположение датчика? Это некоторое идентифицируемое место в теплице, температуру в котором нам необходимо знать; таких мест, вероятно, немного. Для датчика температуры существенно не столько само местоположение, сколько тот факт, что данный датчик расположен именно в данном месте и это отличает его от других датчиков. Теперь можно задать вопрос о том, каковы обязанности датчика температуры? Мы решаем, что датчик должен знать температуру в своем местонахождении и сообщать ее по запросу. Какие же действия может выполнять по отношению к датчику клиент? Мы принимаем решение о том, что клиент может калибровать датчик и получать от него значение текущей температуры.
Для демонстрации проектных решений будет использован язык C++. Читатели, недостаточно знакомые с этим языком, а также желающие уточнить свои знания по другим объектным и объектно- ориентированным языкам, упоминаемым в этой книге, могут найти их краткие описания с примерами в приложении. Итак, вот описания, задающие абстрактный датчик температуры на C++.
// Температура по Фаренгейту typedef float Temperature;
// Число, однозначно определяющее положение датчика typedef unsigned int Location;
class TemperatureSensor {
public:
TemperatureSensor (Location);
~TemperatureSensor();
void calibrate(Temperature actualTemperature);
Temperature currentTemperature() const;
private: ... };
Здесь два оператора определения типов Temperature и Location вводят удобные псевдонимы для простейших типов, и это позволяет нам выражать свои абстракции на языке предметной области [К сожалению, конструкция typedef не определяет нового типа данных и не обеспечивает его защиты. Например, следующее описание в C++: 'typedef int Count;' просто вводит синоним для примитивного типа int. Как мы увидим в следующем разделе, другие языки, такие как Ada и Eiffel, имеют более изощренную семантику в отношении строгой типизации базовых типов]. Temperature - это числовой тип данных в формате с плавающей точкой для записи температур в шкале Фаренгейта. Значения типа Location обозначают места фермы, где могут располагаться температурные датчики.
Класс TemperatureSensor - это только спецификация датчика; настоящая его начинка скрыта в его закрытой (private) части. Класс TemperatureSensor это еще не объект. Собственно датчики - это его
Temperature temperature; TemperatureSensor greenhouse1Sensor (1); TemperatureSensor greenhouse2Sensor(2); temperature = greenhouse1Sensor.currentTemperature();
Рассмотрим инварианты, связанные с операцией currentTemperature. Предусловие включает предположение, что датчик установлен в правильным месте в теплице, а постусловие - что датчик возвращает значение температуры в градусах Фаренгейта.
До сих пор мы считали датчик пассивным: кто-то должен запросить у него температуру, и тогда он ответит. Однако есть и другой, столь же правомочный подход. Датчик мог бы активно следить за температурой и извещать другие объекты, когда ее отклонение от заданного значения превышает заданный уровень. Абстракция от этого меняется мало: всего лишь несколько иначе формулируется ответственность объекта. Какие новые операции нужны ему в связи с этим? Обычной идиомой для таких случаев является обратный вызов. Клиент предоставляет серверу функцию (функцию обратного вызова), а сервер вызывает ее, когда считает нужным. Здесь нужно написать что-нибудь вроде:
class ActiveTemperatureSensor { public:
ActiveTemperatureSensor (Location,
void (*f)(Location, Temperature));
~ActiveTemperatureSensor(); void calibrate(Temperature actualTemperature); void establishSetpoint(Temperature setpoint,
Temperature delta);
Temperature currentTemperature() const;
private: ... };
Новый класс ActiveTemperatureSensor стал лишь чуть сложнее, но вполне адекватно выражает новую абстракцию. Создавая экземпляр датчика, мы передаем ему при инициализации не только место, но и указатель на функцию обратного вызова, параметры которой определяют место установки и температуру. Новая функция установки establishSetpoint позволяет клиенту изменять порог срабатывания датчика температуры, а ответственность датчика состоит в том, чтобы вызывать функцию обратного вызова каждый раз, когда текущая температура actualTemperature