более высоком уровне абстракции, чем класс Plant. В иерархии 'part of' класс находится на более высоком уровне абстракции, чем любой из использовавшихся при его реализации. Так класс Garden стоит на более высоком уровне, чем класс Plant.

Агрегация есть во всех языках, использующих структуры или записи, состоящие из разнотипных данных. Но в объектно-ориентированном программировании она обретает новую мощь: агрегация позволяет физически сгруппировать логически связанные структуры, а наследование с легкостью копирует эти общие группы в различные абстракции.

В связи с агрегацией возникает проблема владения, или принадлежности объектов. В нашем абстрактном огороде одновременно растет много растений, и от удаления или замены одного из них огород не становится другим огородом. Если мы уничтожаем огород, растения остаются (их ведь можно пересадить). Другими словами, огород и растения имеют свои отдельные и независимые сроки жизни; мы достигли этого благодаря тому, что огород содержит не сами объекты Plant, а указатели на них. Напротив, мы решили, что объект GrowingPlan внутренне связан с объектом Garden и не существует независимо. План выращивания физически содержится в каждом экземпляре огорода и погибает вместе с ним. Подробнее про семантику владения мы будем говорить в следующей главе.

Типизация

Что такое типизация? Понятие типа взято из теории абстрактных типов данных. Дойч определяет тип, как 'точную характеристику свойств, включая структуру и поведение, относящуюся к некоторой совокупности объектов' [68]. Для наших целей достаточно считать, что термины тип и класс взаимозаменяемы [Тип и класс не вполне одно и то же; в некоторых языках их различают. Например, ранние версии языка Trellis/Owl разрешали объекту иметь и класс, и тип. Даже в Smalltalk объекты классов SmallInteger, LargeNegativeInteger, LargePositiveInteger относятся к одному типу Integer, хотя и к разным классам [69]. Большинству смертных различать типы и классы просто противно и бесполезно. Достаточно сказать, что класс реализует понятие типа]. Тем не менее, типы стоит обсудить отдельно, поскольку они выставляют смысл абстрагирования в совершенно другом свете. В частности, мы утверждаем, что:

Типизация - это способ защититься от использования объектов одного класса вместо другого, или по крайней мере управлять таким использованием.

Типизация заставляет нас выражать наши абстракции так, чтобы язык программирования, используемый в реализации, поддерживал соблюдение принятых проектных решений. Вегнер замечает, что такой способ контроля существенен для программирования 'в большом' [70].

Идея согласования типов занимает в понятии типизации центральное место. Например, возьмем физические единицы измерения [71]. Деля расстояние на время, мы ожидаем получить скорость, а не вес. В умножении температуры на силу смысла нет, а в умножении расстояния на силу - есть. Все это примеры сильной типизации, когда прикладная область накладывает правила и ограничения на использование и сочетание абстракций.

Примеры сильной и слабой типизации. Конкретный язык программирования может иметь сильный или слабый механизм типизации, и даже не иметь вообще никакого, оставаясь объектно- ориентированным. Например, в Eiffel соблюдение правил использования типов контролируется непреклонно, - операция не может быть применена к объекту, если она не зарегистрирована в его классе или суперклассе. В сильно типизированных языках нарушение согласования типов может быть обнаружено во время трансляции программы. С другой стороны, в Smalltalk типов нет: во время исполнения любое сообщение можно послать любому объекту, и если класс объекта (или его надкласс) не понимает сообщение, то генерируется сообщение об ошибке. Нарушение согласования типов может не обнаружиться во время трансляции и обычно проявляется как ошибка исполнения. C++ тяготеет к сильной типизации, но в этом языке правила типизации можно игнорировать или подавить полностью.

Рассмотрим абстракцию различных типов емкостей, которые могут использоваться в нашей теплице. Вероятно, в ней есть емкости для воды и для минеральных удобрений; хотя первые предназначены для жидкостей, а вторые для сыпучих веществ, они имеют достаточно много общего, чтобы устроить иерархию классов. Начнем с типов.

// Число, обозначающее уровень от 0 до 100 процентов typedef float Level;

Операторы typedef в C++ не вводят новых типов. В частности, и Level и Concentration - на самом деле другие названия для float, и их можно свободно смешивать в вычислениях. В этом смысле C++ имеет слабую типизацию: значения примитивных типов, таких, как int или float неразличимы в пределах данного типа. Напротив, Ada и Object Pascal предоставляют сильную типизацию для примитивных типов. В Ada можно объявить самостоятельным типом интервал значений или подмножество с ограниченной точностью.  

Строгая типизация предотвращает смешивание абстракций.

Построим теперь иерархию классов для емкостей:

class StorageTank { public:

StorageTank(); virtual ~StorageTank(); virtual void fill(); virtual void startDraining(); virtual void stopDraining(); Boolean isEmpty() const; Level level() const;

protected: ... };

class WaterTank : public StorageTank{ public:

WaterTank(); virtual ~WaterTank(); virtual void fill(); virtual void startDraining(); virtual void stopDraining(); void startHeating(); void stopHeating(); Temperature currentTemperature() const;

protected: ... };

class NutrientTank : public StorageTank { public:

NutrientTank(); virtual ~NutrientTank(); virtual void startDrainingt(); virtual void stopDraining ();

protected: ... };

Класс StorageTank - это базовый класс иерархии. Он обеспечивает структуру и поведение общие для всех емкостей: возможность их наполнять или опустошать. Классы WaterTank (емкость для воды) и NutrientTank (для удобрений) наследуют свойства StorageTank, частично переопределяют их и добавляют кое-что свое: например, класс WaterTank вводит новое поведение, связанное с температурой.

Предположим, что мы имеем следующие описания:

StorageTank s1, s2; WaterTank w; NutrientTank n;

Заметьте, переменные такие как s1, s2, w или n - это не экземпляры соответствующих классов. На самом деле, это просто имена, которыми мы обозначаем объекты соответствующих классов: когда мы говорим 'объект s1' мы на самом деле имеем ввиду экземпляр StorageTank, обозначаемый переменной s1. Мы вернемся к этому тонкому вопросу в следующей главе.

При проверке типов у классов, C++ типизирован гораздо строже. Под этим понимается, что выражения, содержащие вызовы операций, проверяются на согласование типов во время компиляции. Например, следующее правильно:

Level l = s1.level(); w.startDrainingt(); n.stopDraining();

Действительно, такие селекторы есть в классах, к которым принадлежат соответствующие переменные. Напротив, следующее неправильно и вызовет ошибку компиляции:

s1.startHeating(); // Неправильно n.stopHeating(); // Неправильно

Таких функций нет ни в самих классах, ни в их суперклассах. Но следующее

n.fill();

совершенно правильно: функции fill нет в определении NutrientTank, но она есть в вышестоящем классе.

Итак, сильная типизация заставляет нас соблюдать правила использования абстракций, поэтому она

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату