и потом дополнять ее подклассами. Чаще вы создаете несколько независимых иерархий, осознаете их общие черты и выделяете один или несколько суперклассов. Требуется несколько проходов вверх и вниз по иерархии, чтобы создать программный проект' [54]. Это не карт-бланш на хакерство, а всего лишь наблюдение, основанное на опыте и подтверждающее тот факт, что объектно- ориентированное проектирование - процесс последовательных приближений. Сходное наблюдение делает Страуструп: 'Наиболее частые реорганизации в иерархии классов - это сведение совпадающих частей двух классов в один и разделение класса на два новых' [55].
Трудно сразу расположить классы и объекты на правильных уровнях абстракции. Иногда, найдя важный класс, мы можем передвинуть его вверх в иерархии классов, тем самым увеличивая степень повторности использования кода. Это называется продвижением класса [56]. Аналогично, можем прийти к выводу, что класс слишком обобщен, и это затрудняет наследование: происходит семантический разрыв или конфликт зернистости [57]. В обоих случаях мы пытаемся выявить зацепление или недостаточную связность абстракций и смягчить конфликт.
Программисты часто легкомысленно относятся к правильному наименованию классов и объектов, но на самом деле очень важно отразить в обозначении классов и объектов сущность описываемых ими предметов. Программы необходимо писать тщательно, как художественную литературу, дума я и о читателях, и о компьютере [58]. При идентификации одного только объекта вам нужно придумать имена: для него, для его класса и для модуля, в котором класс объявлен. Умножьте на тысячу объектов и сотни классов, и вы поймете, как остра проблема.
Мы предлагаем следующие правила:
• Объекты следует называть существительными: theSensor или shape.
• Классы следует называть обобщенными существительными: Sensors, Shapes.
• Операции-модификаторы следует называть активными глаголами: Draw, moveLeft.
• У операций-селекторов в имя должен включаться запрос или форма глагола 'to be': extentOf, isOpen.
• Подчеркивание и использование заглавных букв - на ваше усмотрение, постарайтесь лишь не противоречить сами себе.
Идентификация механизмов
Как найти механизмы? В предыдущем обсуждении мы называли механизмами структуры, посредством которых объекты взаимодействуют друг с другом и ведут себя так, как требуется. Так же как при разработке класса фактически определяется поведение отдельных объектов, так же и механизмы служат для задания поведения совокупности объектов. Таким образом, механизмы представляют шаблоны поведения.
Рассмотрим требование, предъявляемое к автомобилю: нажатие на акселератор должно приводить к увеличению оборотов двигателя, а отпускание акселератора - к их уменьшению. Как это происходит, водителю совершенно безразлично. Может быть использован любой механизм, обеспечивающий нужное поведение, и его выбор - дело вкуса разработчика. Например, допустимо любое из предложенных ниже инженерных решений:
• Механическая связь между акселератором и карбюратором (обычное решение).
• Под педалью ставится датчик давления, который соединяется с компьютером, управляющим карбюратором (механизм управления по проводам).
• Карбюратора нет. Бак с горючим находится на крыше автомобиля и топливо свободно течет в двигатель. Поток топлива регулируется зажимом на трубке. Нажатие на педаль акселератора ослабляет зажим (очень дешево).
Какую именно реализацию выберет разработчик, зависит от таких параметров, как стоимость, надежность, технологичность и т.д.
Подобно тому, как было бы недопустимой невежливостью со стороны клиента нарушать правила пользования сервером, также и выход за пределы правил и ограничений поведения, заданных механизмом, социально неприемлем. Водитель был бы удивлен, если бы, нажав на педаль акселератора, он увидел зажегшиеся фары.
Ключевые абстракции определяют словарь проблемной области, механизмы определяют суть проекта. В процессе проектирования разработчик должен придумать не только начинку классов, но и то, как объекты этих классов будут взаимодействовать друг с другом. Но конкретный механизм взаимодействия все равно придется разложить на методы классов. В итоге протокол класса будет отражать поведение его объектов и работу механизмов, в которых они участвуют.
Механизмы, таким образом, представляют собой стратегические решения в проектировании, подобно проектированию структуры классов. С другой стороны, проектирование интерфейса какого-то одного класса - это скорее тактическое решение. Стратегические решения должны быть выполнены явно, иначе у нас получится неорганизованная толпа объектов, кидающихся выполнять работу, расталкивая друг друга. В наиболее элегантных, стройных и быстрых программах воплощены тщательно разработанные механизмы.
Механизмы представляют только один из шаблонов, которые мы находим в структурированных системах. Так, на нижнем конце своеобразной биологической пирамиды находятся идиомы. Это обороты, специфические для языков программирования или программистских культур, и отражающие общепринятые способы выражаться [Определяющей характеристикой идиомы является то, что ее игнорирование или нарушение влечет немедленные социальные последствия: вы превращаетесь в йеху или, еще хуже, в чужака, не заслуживающего уважения]. Например, в CLOS не принято использовать подчеркивание в именах функций или переменных, хотя в Ada это дело обычное [59]. Изучая язык, приходится учить его идиомы, которые обычно передаются в форме фольклора. Однако, как отметил Коплейн, идиомы играют важную роль в кодификации шаблонов низкого уровня. Он заметил, что 'многие общепрограммистские действия идиоматичны' и поэтому распознание таких идиом позволяет 'использовать конструкции C++ для выражения функциональности вне самого этого языка с сохранением иллюзии, что они являются частью языка' [60].
Место на верху пирамиды занимают среды разработки. Среда разработки - это собрание классов, предназначенных для определенной прикладной ситуации. Среда дает готовые классы, механизмы и услуги, которыми можно сразу пользоваться или приспосабливать для своих нужд.
Если идиомы составляют часть программистской культуры, то среды разработки обычно - коммерческий продукт. Например, Apple MacApp и его преемник Bedrock - среды, написанные на C++ и предназначенные для построения приложений со стандартным интерфейсом пользователя Macintosh. Аналогичную роль для Windows играют Microsoft Foundation Classes и ObjectWindows корпорации Borland.
Примеры механизмов. Рассмотрим механизм рисования, применяемый обычно в графических интерфейсах пользователя. Для того, чтобы представить какой-либо рисунок на экране, необходимы несколько объектов: окно, вид, модель, которую надо показать, и, наконец, клиент, который знает, когда надо нарисовать модель, но не знает, как это сделать. Сначала клиент дает окну команду нарисовать себя. Так как окно может включать в себя ряд видов, оно в свою очередь приказывает каждому из них нарисовать себя. Каждый вид посылает сообщение своей модели нарисовать себя, в результате чего и появляется изображение на экране. В этом механизме модель полностью отделена от окна и вида, в котором она представлена: виды могут посылать сообщения моделям, но модели не могут посылать сообщения видам. Smalltalk использует вариант этого механизма, названный парадигмой Model-View- Controller, модель-вид-контроллер (MVC) [61].