наиболее общее их использование - для представления объектов, которые по сценарию диаграммы посылаются как параметры.
Активные объекты и синхронизация. Как отмечалось в главе 3, некоторые объекты могут быть активными, то есть им отводится отдельный поток управления. Другие объекты могут существовать только в однопоточной среде. Третьи, будучи по природе однозадачными, гарантированно переносятся в многопоточную среду.
В каждом из этих случаев мы должны ответить на два вопроса: как выделить активные объекты, управляющие сценарием, и как представить различные формы синхронизации объектов.
Ранее, говоря о дополнительных элементах спецификаций класса, мы заметили, что есть четыре типа семантики: последовательная, защищенная, синхронизированная и активная. По существу, все объекты класса наследуют соответствующую семантику класса; все объекты считаются последовательными, если явно не указано обратное. Мы можем явно показать многозадачную семантику объекта на диаграмме объектов, указав в левом нижнем углу значка объекта одно из слов sequential, guarded, synchronous или active. Например, на рис. 5-28 мы видим, что объекты H, C и некий экземпляр класса EnvironmentalController - активные. Немаркированные объекты, такие как L, считаются последовательными.
Символ синхронизации сообщений, введенный ранее (простая стрелка), представляет обычную последовательную передачу сообщения. Однако, при наличии нескольких потоков управления мы должны указывать и другие формы синхронизации. Пример на рис. 5-28, возможно, несколько надуманный, иллюстрирует различные типы синхронизации сообщений, которые могут появиться на диаграмме объектов. Сообщение turnOn() (включить) - пример простой посылки сообщения; оно изображается простой стрелкой. Семантика простой посылки сообщения гарантирована только в однопоточной среде. Остальные сообщения из этого примера используют некоторые формы синхронизации процессов. Все такие дополнительные виды синхронизации применяются только к серверам, которые не являются последовательными.
Например, сообщение startUp() - синхронизированное, то есть клиент будет ждать до тех пор, пока сервер не примет сообщение. Посылка синхронизированного сообщения эквивалентна механизму свиданий задач в языке Ada (rendezvous). В случае сообщения isReady() клиент отложит сообщение, если сервер не сможет его немедленно обработать. Сообщение restart () будет отложено клиентом, если сервер не может его обработать за указанный промежуток времени.
В каждом из трех последних случаев клиент должен ждать, пока сервер обработает сообщение, или отложить пересылку, после чего может быть возобновлено управление. Сообщение failure имеет другую семантику. Это пример несинхронизированного сообщения, которое подразумевает, что клиент посылает событие серверу для обработки, сервер ставит сообщение в очередь, а клиент продолжает работать. Такие асинхронные сообщения сродни прерываниям.
Расписание. В программах, имеющих ограничения по времени, важно отслеживать чистое время с момента начала каждого сценария. Для обозначения относи тельного времени (в секундах) мы ставим знак плюс. Например, на рис. 5-29 сообщение startUp() вызывается в первый раз спустя 5 секунд после начала сценария далее, через 6.5 секунд после начала сценария следует сообщение ready() и затем, спустя 7 секунд после начала сценария, - сообщение turnOn().
Спецификации
Как и для диаграмм классов, за каждым элементом диаграммы объектов могут стоять спецификации. Спецификации объектов и их связей не несут никакой иной информации, кроме уже описанной. С другой стороны, спецификации диаграмм объектов как целого могут сообщить кое-что важное. Как упоминалось ранее, каждая диаграмма объектов существует в контексте. В спецификации контекст указывается следующим образом:
Context: глобальный | категория | класс | операция
В частности, область видимости диаграммы объектов может быть глобальной, или в контексте указанной категории классов, класса или операции (включая, как методы, так и свободные подпрограммы).
5.5. Диаграммы взаимодействия
Существенное: объекты и их взаимодействия
Диаграммы взаимодействия не вводят новых понятий или обозначений. Скорее, они берут существенные элементы диаграммы объектов и перестраивают их. Как показывает рис. 5-30, диаграмма взаимодействий внешне напоминает таблицу. Имена объектов диаграммы взаимодействий (те же, что и на диаграмме объектов) записываются горизонтально в верхней ее строке. Под каждым из них рисуется вертикальная пунктирная линия. Отправления сообщений (которые могут обозначать события или вызовы операций) показываются горизонтальными стрелками, с тем же синтаксисом и обозначениями синхронизации, что и на диаграмме объектов. Линия, обозначающая посылку сообщения, проводится от вертикали клиента к вертикали сервера. Первое сообщение показывается на самом высоком уровне, второе ниже и т.д., таким образом отпадает надобность в их порядковых номерах.
Диаграммы взаимодействий часто лучше диаграмм объектов передают семантику сценариев на ранних этапах жизненного цикла разработки, когда еще не идентифицированы протоколы отдельных классов. Как мы расскажем в следующей главе, в начале разработки диаграммы взаимодействий обычно сконцентрированы скорее на событиях, чем на операциях, потому что события помогают определить границы системы. Когда же уточнились структуры классов, акцент смещается к диаграммам объектов, семантика которых более выразительна.
Дополнительные понятия
Диаграммы взаимодействия концептуально очень просты, но есть два поясняющих элемента, которые позволяют сделать их более выразительными при наличии сложных шаблонов взаимодействия.
Пояснения. Для сложных сценариев, использующих условия или итерации, диаграмма объектов может быть дополнена пояснениями. Как показано на примере (рис. 5-31), пояснения