компании упадут вниз, и наоборот. Кроме того, этот абсолютно надежный источник (деятельность которого, однако, может быть не очень-то законной) утверждает, что при завершении завтрашних торгов цены на акции этих двух компаний гарантированно будут обратно пропорциональны друг другу. Например, если одни акции будут стоить $2, то другие — $1/2 (50 центов), а если одни будут стоить $10, то другие — $1/10 (10 центов), и т.д. Однако какие именно акции пойдут вверх, а какие упадут в цене, источник сказать не может. Как поступить в такой ситуации?
Что же, вкладчик немедленно инвестирует все свои капиталы на биржевой рынок, распределив их в равных долях между акциями двух компаний. Сделав несколько оценок, легко убедиться, что капитал не уменьшится вне зависимости от того, что произойдет на рынке завтра. В худшем случае капитал не изменится (если акции обеих компаний по завершении торгов будут стоить $1), но любое изменение стоимости акций по известной от источника схеме приведет к увеличению вклада. Например, если акции первой компании будут стоить $4, а акции второй компании будут стоить $1/4 (25 центов), то их суммарная стоимость будет равна $4,25 (за каждую пару акций) против $2 накануне торгов. Более того, с точки зрения чистой прибыли совершенно не важно, акции какой компании выросли в цене, а какой компании упали. Если вкладчика волнуют только деньги, два различных исхода неразличимы в финансовом отношении.
Ситуация в теории струн аналогична в том смысле, что энергия струнных конфигураций есть сумма двух вкладов — колебательного и топологического, и эти вклады в полную энергию, вообще говоря, различны. Однако, как подробно обсуждается ниже, определенные пары разных геометрических состояний, соответствующие большой топологической / малой колебательной энергии и малой топологической / большой колебательной энергии, являются
Как станет ясно далее, для более полной аналогии с теорией струн следует рассмотреть случай, когда начальное капиталовложение распределяется неравномерно между акциями двух компаний, например, покупается 1 000 акций первой компании и 3 000 акций второй компании. Теперь полная итоговая стоимость будет зависеть от того, какие акции упадут в цене, а какие вырастут. Например, если акции первой компании будут стоить $10, а акции второй — 10 центов, то начальное капиталовложение $4 000 вырастет до $10 300. Если случится противоположное, т.е. акции первой компании будут стоить 10 центов, а акции второй — $10, то капиталовложение вырастет до $30 100, что значительно больше.
Однако обратная зависимость цен акций гарантирует следующее. Если другой вкладчик распределяет капиталовложения прямо противоположным образом, т.е. покупает 3 000 акций первой компании и 1 000 акций второй компании, то в результате он получит $10 300 в случае роста акций второй компании (ту же сумму, которую получит первый вкладчик в случае роста акций первой компании) и $30 100 в случае роста акций первой компании (снова ту же сумму, которую получит первый вкладчик в противном случае). Таким образом, с точки зрения полной стоимости акций обмен типов поднявшихся и упавших в цене акций в точности компенсируется обменом числа акций каждой из двух компаний.
Приняв к сведению последнее наблюдение, снова обратимся к теории струн и рассмотрим возможные энергии струны на конкретном примере. Предположим, что радиус циклического измерения вселенной Садового шланга в 10 раз больше планковской длины. Запишем это в виде формулы
Видно, что ситуация очень напоминает ситуацию на фондовой бирже. При этом топологические и колебательные числа являются непосредственными аналогами количеств купленных акций двух компаний, a
Полная таблица была бы бесконечно длинной, так как топологические и колебательные числа могут принимать произвольные целые значения, однако представленный фрагмент таблицы достаточен для обсуждения. Из таблицы видно, что она соответствует ситуации больших топологических вкладов и малых колебательных вкладов: топологические вклады кратны 10, а колебательные вклады кратны 1/10.
Таблица 10.1
Выборочные колебательные и топологические конфигурации струны, движущейся во Вселенной с радиусом
Колебательное число | Топологическое число | Полная энергия |
---|---|---|
1 | 1 | 1/10 + 10 = 10,1 |
1 | 2 | 1/10 + 20 = 20,1 |
1 | 3 | 1/10 + 30 = 30,1 |
1 | 4 | 1/10 + 40 = 40,1 |
2 | 1 |